2025-02-24T07:35:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2022037%22&qt=morelikethis&rows=5
2025-02-24T07:35:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22ujp2-article-2022037%22&qt=morelikethis&rows=5
2025-02-24T07:35:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-24T07:35:57-05:00 DEBUG: Deserialized SOLR response

Про визначення області частотної дисперсії коефіцієнтів перенесення класичних рідин залежно від природи затухання релаксуючих потоків

We consider the frequency dispersion region of the dynamic shear viscosity coefficient ηs (ω) of simple liquids obtained by the method of kinetic equations, where the equilibrium structure of a liquid is restored according to the diffusion law or exponentially. At a certain choice of the intermolecu...

Full description

Saved in:
Bibliographic Details
Main Author: Odinaev, S.
Format: Article
Language:English
Published: Publishing house "Academperiodika" 2022
Subjects:
-
Online Access:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2022037
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the frequency dispersion region of the dynamic shear viscosity coefficient ηs (ω) of simple liquids obtained by the method of kinetic equations, where the equilibrium structure of a liquid is restored according to the diffusion law or exponentially. At a certain choice of the intermolecular interaction potential Φ (|r|) and the equilibrium radial distribution function g0 (|r|), the coefficient ηs (ω) for liquid argon was numerically calculated as a function of the density ρ, temperature T, and frequency ω. The obtained theoretical values of the shear viscosity ηs (ω) are in a satisfactory quantitative agreement with experimental data. It is shown that the frequency dispersion region of ηs (ω) obtained on the basis of the diffusive mechanism, i.e. structural relaxation, is large (~ 105 Hz). In the case of the exponential attenuation of the viscous stress tensor, this region is narrow (~ 102 Hz), which agrees both with acoustic measurements and the results of a phenomenological theory.