Розкладання електромагнітних потенціалів по парціальних функціях електродинамічних ліній з дисперсією

The utilization of partial functions, or oscillets, as the basis functions localized in all spatial coordinates, is proposed for the expansion of non-stationary, non-harmonic electromagnetic potentials within lengthy three-dimensional dispersive electrodynamic systems, such as electrodynamic lines (...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Bilotserkivska, A.I., Bondarenko, I.M., Gritsunov, A.V., Babychenko, O.Yu., Sviderska, L.I., Vasianovych, A.V.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2024
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023190
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:The utilization of partial functions, or oscillets, as the basis functions localized in all spatial coordinates, is proposed for the expansion of non-stationary, non-harmonic electromagnetic potentials within lengthy three-dimensional dispersive electrodynamic systems, such as electrodynamic lines (ELs). These functions are derived as linear transformations of the manifold of EL eigenfunctions, aiming to minimize the spatial extension of each oscillet. Emphasis is placed on the adoption of these new functions in electrodynamic and electronic computations, particularly in the optimization of irregular ELs found in various microwave and optical sources, including those with open-ended configurations featuring a continuous spectrum of eigenfunctions. An illustrative example showing the utility of partial functions in the electrodynamic calculation of a longitudinally inhomogeneous EL is provided.