Фізичні основи феромагнітного гіроскопа з нанорозмірними чутливими елементами

Physical principles of applying modern nanotechnologies to develop nano-sized and energyefficient sensitive elements for control systems in small satellites have been considered. Of practical interest is the creation of a ferromagnetic gyroscope. As its model, a periodic structure (a pseudocrystal)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Chepilko, N.M., Ponomarenko, S.A.
Format: Artikel
Sprache:English
Ukrainian
Veröffentlicht: Publishing house "Academperiodika" 2024
Schlagworte:
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023309
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:Physical principles of applying modern nanotechnologies to develop nano-sized and energyefficient sensitive elements for control systems in small satellites have been considered. Of practical interest is the creation of a ferromagnetic gyroscope. As its model, a periodic structure (a pseudocrystal) of coherent monodomain ferromagnetic quantum dots (FQDs) localized in spherical nanocontainers, where they are expected to dwell in the quantum levitation state, is proposed. Owing to the Einstein–de Haas effect, those FQDs would retain their angular momentum over time. To control the pseudocrystal orientation in space, the pseudocrystal is mounted on a movable platform located in an external two-component magnetic field (MF). The static component of the MF is perpendicular to the pseudocrystal base, and the dynamic component is perpendicular to the pseudocrystal lateral side. By analyzing the absorption spectrum of the dynamic MF and its dependence on the pseudocrystal orientation in space, it is possible to calculate the angular coordinates of the new pseudocrystal position, which are determined by the relative orientations of the fixed direction of the FQD’s angular momentum and the vector of the external static MF.