Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації

Seawater, a vast resource, holds fresh water that is increasingly crucial in industrially developed countries. The demand for freshwater for domestic use, agriculture, and industry in these nations far surpasses the available supplies, leading to freshwater scarcity. Your invaluable work in water re...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Ignatov, I., Gluhchev, G., Ignatov, A.I.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2024
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023369
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
id ujp2-article-2023369
record_format ojs
institution Ukrainian Journal of Physics
baseUrl_str
datestamp_date 2024-12-14T14:46:18Z
collection OJS
language English
topic десолонiзацiя
зворотнiй осмос
хiмiчне осадження
дестиляцiя
осмос з iон-обмiнним електродiалiзом
“блакитна енергiя”
spellingShingle десолонiзацiя
зворотнiй осмос
хiмiчне осадження
дестиляцiя
осмос з iон-обмiнним електродiалiзом
“блакитна енергiя”
Ignatov, I.
Gluhchev, G.
Ignatov, A.I.
Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації
topic_facet desalination
reverse osmosis
chemical precipitation
distillation
ion exchange
electrodialysis
osmosis
“blue energy”
десолонiзацiя
зворотнiй осмос
хiмiчне осадження
дестиляцiя
осмос з iон-обмiнним електродiалiзом
“блакитна енергiя”
format Article
author Ignatov, I.
Gluhchev, G.
Ignatov, A.I.
author_facet Ignatov, I.
Gluhchev, G.
Ignatov, A.I.
author_sort Ignatov, I.
title Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації
title_short Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації
title_full Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації
title_fullStr Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації
title_full_unstemmed Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації
title_sort десолонізація морської води. процес осмосу для “блакитної енергії” та оцінка десолонізації
title_alt Desalination of Seawater. Osmotic Process for “Blue Energy” and Estimation for Desalination
description Seawater, a vast resource, holds fresh water that is increasingly crucial in industrially developed countries. The demand for freshwater for domestic use, agriculture, and industry in these nations far surpasses the available supplies, leading to freshwater scarcity. Your invaluable work in water resource management and environmental science, which is pivotal in addressing this issue, is greatly appreciated. This issue is not limited to specific countries in places like Israel and Kuwait, where the level of precipitation is very low, and freshwater reserves do not meet the increasing needs due to the modernization of the economy and population growth. This global relevance underscores the importance of desalination technologies as a potential solution. As we explore the potential of desalination technologies, we are presented with a promising solution to water scarcity- the vast seas and oceans as alternative water sources. This potential is particularly significant in your field of research and expertise, underscoring the relevance of this paper to your work. The countries with the cleanest drinking water usually have large freshwater reserves in lakes, rivers, underground waters, and glaciers, providing a reassuring buffer against water scarcity. Brazil, for instance, benefits from abundant freshwater from the Amazon River and its extensive basin system. Canada boasts numerous lakes and river systems. The United States include large freshwater reserves in the Great Lakes, numerous rivers, and groundwater. Colombia has large freshwater resources, primarily due to numerous rivers and groundwater. Chile is rich in glacier water, further enhancing its water security. This diverse range of water resources underscores the need for desalination technologies to supplement these sources. In Europe, the Scandinavian countries Norway and Sweden have natural resources for clean drinking water from mountain rivers and lakes. Denmark is flat, but like the other Scandinavian countries, it maintains strict environmental policies and a high-quality water supply network. Germany has a well-developed water resource management system that ensures high-quality drinking water. German drinking water typically comes from underground sources, which are considered very clean, as well as from rivers and dams. There are many glacier sources and rivers in the Alpine countries of Austria, Switzerland, and Italy. Ukraine and Romania have large amounts of drinking water from the Carpathians. Bulgaria is rich in rivers and dams. It has 141 mountain peaks with heights of over 2000 m. Some countries have extensive natural resources that help them to provide the necessary drinking water for their citizens, although distribution and accessibility may depend on regional and economic conditions. The following countries have desalination technologies for clean drinking water from seawater – Saudi Arabia, United Arab Emirates, Israel, Singapore, Australia, Spain, and California (USA).
publisher Publishing house "Academperiodika"
publishDate 2024
url https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023369
work_keys_str_mv AT ignatovi desalinationofseawaterosmoticprocessforblueenergyandestimationfordesalination
AT gluhchevg desalinationofseawaterosmoticprocessforblueenergyandestimationfordesalination
AT ignatovai desalinationofseawaterosmoticprocessforblueenergyandestimationfordesalination
AT ignatovi desolonízacíâmorsʹkoívodiprocesosmosudlâblakitnoíenergíítaocínkadesolonízacíí
AT gluhchevg desolonízacíâmorsʹkoívodiprocesosmosudlâblakitnoíenergíítaocínkadesolonízacíí
AT ignatovai desolonízacíâmorsʹkoívodiprocesosmosudlâblakitnoíenergíítaocínkadesolonízacíí
first_indexed 2024-12-15T20:36:26Z
last_indexed 2024-12-15T20:36:26Z
_version_ 1818749491320193024
spelling ujp2-article-20233692024-12-14T14:46:18Z Desalination of Seawater. Osmotic Process for “Blue Energy” and Estimation for Desalination Десолонізація морської води. Процес осмосу для “блакитної енергії” та оцінка десолонізації Ignatov, I. Gluhchev, G. Ignatov, A.I. desalination reverse osmosis chemical precipitation distillation ion exchange electrodialysis osmosis “blue energy” десолонiзацiя зворотнiй осмос хiмiчне осадження дестиляцiя осмос з iон-обмiнним електродiалiзом “блакитна енергiя” Seawater, a vast resource, holds fresh water that is increasingly crucial in industrially developed countries. The demand for freshwater for domestic use, agriculture, and industry in these nations far surpasses the available supplies, leading to freshwater scarcity. Your invaluable work in water resource management and environmental science, which is pivotal in addressing this issue, is greatly appreciated. This issue is not limited to specific countries in places like Israel and Kuwait, where the level of precipitation is very low, and freshwater reserves do not meet the increasing needs due to the modernization of the economy and population growth. This global relevance underscores the importance of desalination technologies as a potential solution. As we explore the potential of desalination technologies, we are presented with a promising solution to water scarcity- the vast seas and oceans as alternative water sources. This potential is particularly significant in your field of research and expertise, underscoring the relevance of this paper to your work. The countries with the cleanest drinking water usually have large freshwater reserves in lakes, rivers, underground waters, and glaciers, providing a reassuring buffer against water scarcity. Brazil, for instance, benefits from abundant freshwater from the Amazon River and its extensive basin system. Canada boasts numerous lakes and river systems. The United States include large freshwater reserves in the Great Lakes, numerous rivers, and groundwater. Colombia has large freshwater resources, primarily due to numerous rivers and groundwater. Chile is rich in glacier water, further enhancing its water security. This diverse range of water resources underscores the need for desalination technologies to supplement these sources. In Europe, the Scandinavian countries Norway and Sweden have natural resources for clean drinking water from mountain rivers and lakes. Denmark is flat, but like the other Scandinavian countries, it maintains strict environmental policies and a high-quality water supply network. Germany has a well-developed water resource management system that ensures high-quality drinking water. German drinking water typically comes from underground sources, which are considered very clean, as well as from rivers and dams. There are many glacier sources and rivers in the Alpine countries of Austria, Switzerland, and Italy. Ukraine and Romania have large amounts of drinking water from the Carpathians. Bulgaria is rich in rivers and dams. It has 141 mountain peaks with heights of over 2000 m. Some countries have extensive natural resources that help them to provide the necessary drinking water for their citizens, although distribution and accessibility may depend on regional and economic conditions. The following countries have desalination technologies for clean drinking water from seawater – Saudi Arabia, United Arab Emirates, Israel, Singapore, Australia, Spain, and California (USA). Зроблено порiвняльний аналiз методiв десолонiзацiї морської води, вказано райони їх застосування та розглянуто проблему отримання енергiї в процесi осмосу. Publishing house "Academperiodika" 2024-12-14 Article Article Original Research Article (peer-reviewed) Оригінальна дослідницька стаття (з незалежним рецензуванням) application/pdf https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023369 10.15407/ujpe69.12.905 Ukrainian Journal of Physics; Vol. 69 No. 12 (2024); 905 Український фізичний журнал; Том 69 № 12 (2024); 905 2071-0194 2071-0186 10.15407/ujpe69.12 en https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023369/3228 Copyright (c) 2024 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine