Структури, пов’язані з доповненням кілець Борромео в кулі Пуанкаре

Guided by physical needs, we deal with the rotationally isotropic Poincar´e ball, when considering the complement of Borromean rings embedded in it. We consistently describe the geometry of the complement and realize the fundamental group as isometry subgroup in three dimensions. Applying this reali...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Nazarenko, Anton A., Nazarenko, A.V.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Publishing house "Academperiodika" 2024
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023433
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:Guided by physical needs, we deal with the rotationally isotropic Poincar´e ball, when considering the complement of Borromean rings embedded in it. We consistently describe the geometry of the complement and realize the fundamental group as isometry subgroup in three dimensions. Applying this realization, we reveal normal stochastization and multifractal behavior within the examined model of directed random walks on the rooted Cayley tree, whose sixbranch graphs are associated with dendritic polymers. According to Penner, we construct the Teichm¨uller space of the decorated ideal octahedral surface related to the quotient space of the fundamental group action. Using the conformality of decoration, we define six moduli and the mapping class group generated by cyclic permutations of the ideal vertices. Intending to quantize the geometric area, we state the connection between the induced geometry and the sine-Gordon model. Due to such a correspondence we obtain the differential two-form in the cotangent bundle of the moduli space.