Основні положення алгебраїчної версії методу резо-нуючих груп у разі одновимірного випадку. I. Аналітичні результати
The features of analytic calculations in the framework of the algebraic version of the resonatinggroup method, which is based on expanding the wave function of a quantum system on the basis of oscillator functions, have been examined in the one-dimensional case. The construction of the Hamiltonian m...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English Ukrainian |
| Опубліковано: |
Publishing house "Academperiodika"
2025
|
| Теми: | |
| Онлайн доступ: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2023705 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Ukrainian Journal of Physics |
Репозитарії
Ukrainian Journal of Physics| Резюме: | The features of analytic calculations in the framework of the algebraic version of the resonatinggroup method, which is based on expanding the wave function of a quantum system on the basis of oscillator functions, have been examined in the one-dimensional case. The construction of the Hamiltonian matrix elements using the technique of generating functions and generating matrix elements has been discussed in detail. The asymptotic behavior is found for the coefficients in the wave function expansion in the oscillator function basis as the oscillator quantum number tends to infinity in the continuous spectrum case. The asymptotic dependence of the potential-energy matrix elements on the oscillator quantum number has been obtained for a Gaussian potential. |
|---|