Оптичні та гамма-спектрометричні дослідження механізму надходження калію та цезію-137 у рослини в польових умовах при нестачі води

Channels of the 137Cs and potassium transfer from soil to plants in the field under water-stressed conditions are investigated. Different rapidly maturing plants were grown and selected simultaneously several times during the 2012 and 2013 seasons at the same experimental sites with different soil t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Prorok, V. V., Dacenko, O. I., Bulavin, L. A., Zelensky, S. E., Poperenko, L. V.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2018
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/47
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:Channels of the 137Cs and potassium transfer from soil to plants in the field under water-stressed conditions are investigated. Different rapidly maturing plants were grown and selected simultaneously several times during the 2012 and 2013 seasons at the same experimental sites with different soil types under natural conditions at the Chornobyl 10-km Exclusion Zone. After each selection, the contents of 137Cs and K in the plants and extracted soil solutions were measured. Potassium and cesium entered plant roots, as a rule, through transporters with low selectivity, when the concentration of dissolved potassium (CK) in soil was greater than 2 /ug/cm3. In this case, the selectivity of the plant uptake for 137Cs versus potassium r was near 1. However, when CK was between 0.5 and 2 /ug/cm3, potassium also appeared to enter plant roots through highly selective potassium transporters, while cesium entered roots only through the transporters with low selectivity. In this case, the value of r was much less than 1. When CK was less than 0.5 /ug/cm3, cesium and potassium appeared to enter roots through a complement of transporters with greater selectivity for cesium than for potassium. The value of r in this case could exceed 1.