USE OF SOLUTIONS OF THE REVERSE PROBLEM OF LINEAR AUTOREGRESSION PROCESSES FOR SIMULATION OF VIBRATION SIGNALS OF ROTATING NODES OF WIND GENERATORS

В роботі розглянуто деякі методи діагностування технічного стану енергетичного обладнання. Наведено порівняння різ-них методів вібродіагностики, що можуть бути використані при діагностуванні технічного стану генераторів вітроуста-новок. Розглянуто використання лінійних випадкових процесів для побудо...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Zvarich, V.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Institute of Renewable Energy National Academy of Sciences of Ukraine 2019
Теми:
Онлайн доступ:https://ve.org.ua/index.php/journal/article/view/216
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Vidnovluvana energetika

Репозитарії

Vidnovluvana energetika
Опис
Резюме:В роботі розглянуто деякі методи діагностування технічного стану енергетичного обладнання. Наведено порівняння різ-них методів вібродіагностики, що можуть бути використані при діагностуванні технічного стану генераторів вітроуста-новок. Розглянуто використання лінійних випадкових процесів для побудови систем діагностики генераторів вітроустано-вок. Представлено метод знаходження характеристичної функції породжуючого процесу для лінійного процесу авторегре-сії другого порядку AR(2), що має Гамма-розподіл. Властивості Пуасонівських спектрів стрибків використовуються для рішення такої проблеми. Вирішення такої задачі, базується на властивості характеристичної функції стаціонарного лі-нійного випадкового процесу авторегресії AR(2), , , де параметри авторегресії; множина цілих чисел; випадковий процес з дискретним часом та незалежними значеннями, що має безмежно подільний закон розподілу, який часто називають породжуючим процесом. Іноді таку задачу називають оберненою задачею. В статті відзначається що одновимірний логарифм характеристичної функції лінійного стаціонар-ного процесу авторегресії можна задати одновимірною характеристичною функцією в канонічному представленні Колмо-горова, де параметр та спектральна функція стрибків однозначно визначають характеристичну функцію. Логарифм характеристичної функції лінійного стаціонарного процесу авторегресії може бути також записана в такій формі: , де параметри та визначають харак-теристичну функцію породжуючого процесу а є ядром лінійного випадкового процесу . Параметри та , та пуасонівського спектру стрибків взаємопов҆язані наступним чином . є ядром перетворення яке є інваріантним до породжуючого і визначається за допомогою коефіцієнтів . Властивості використовуються для вирішення оберненої задачі. Показано приклад знаходження пуасонівських спектрів стрибків і характеристичної функції для лінійного процесу авторегресії дру-гого порядку, що має Гамма-розподіл. Метод може бути використаний для вирішення оберненої задачі для авторегресійних процесів інших класів. Показано ви-користання отриманих результатів для моделювання вібраційних сигналів генератора вітроустановки. Бібл. 17, рис. 5