FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW

The paper is based on the results of calculations of a number of synchronous gearless direct-drive wind generators of modular design [1] with permanent magnet excitation in range of power since 600 to 3600 kW at a wind speed that is taken abroad during the design – 12.5 m/s. This approach to the stu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Permynov, Y., Monakhov, E., Volkov, L.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Institute of Renewable Energy National Academy of Sciences of Ukraine 2020
Теми:
Онлайн доступ:https://ve.org.ua/index.php/journal/article/view/255
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Vidnovluvana energetika

Репозитарії

Vidnovluvana energetika
id veorgua-article-255
record_format ojs
institution Vidnovluvana energetika
collection OJS
language Ukrainian
topic gearless generators of modular design
winding options
tooth zone
meander winding
slot fill factor
the number of slots per pole and phase
the number of turns in the section
active length of conductors
electromagnetic power.
безредукторные генераторы модульной конструкции
варианты обмоток
зубцовая зона,
spellingShingle gearless generators of modular design
winding options
tooth zone
meander winding
slot fill factor
the number of slots per pole and phase
the number of turns in the section
active length of conductors
electromagnetic power.
безредукторные генераторы модульной конструкции
варианты обмоток
зубцовая зона,
Permynov, Y.
Monakhov, E.
Volkov, L.
FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW
topic_facet gearless generators of modular design
winding options
tooth zone
meander winding
slot fill factor
the number of slots per pole and phase
the number of turns in the section
active length of conductors
electromagnetic power.
безредукторные генераторы модульной конструкции
варианты обмоток
зубцовая зона,
format Article
author Permynov, Y.
Monakhov, E.
Volkov, L.
author_facet Permynov, Y.
Monakhov, E.
Volkov, L.
author_sort Permynov, Y.
title FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW
title_short FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW
title_full FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW
title_fullStr FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW
title_full_unstemmed FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW
title_sort features of design the permanent magnet windgenerator of high power (600÷3600) kw
title_alt ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ВЕТРОГЕНЕРАТОРОВ ПОВЫШЕННОЙ МОЩНОСТИ (600÷3600) кВт С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ
description The paper is based on the results of calculations of a number of synchronous gearless direct-drive wind generators of modular design [1] with permanent magnet excitation in range of power since 600 to 3600 kW at a wind speed that is taken abroad during the design – 12.5 m/s. This approach to the study of machines allows to evaluate the complex relationship of their parameters with a minimum of assumptions, in particular, to take into account the saturation of the most loaded sections of the magnetic circuit and determine the feasibility of using some possible winding options that provide the greatest electromagnetic power to the generators, taking into account the manufacturability of their implementation; the features of the change in the tooth zone of high-power machines are shown, due to the low rotation speed of the generators in gearless installations and justified for this reason, the possibility of using the "meander" winding. In such type of winding each phase is made in the form of a single continuous conductor, which eliminates the connection of sections in phase, which takes place in traditional windings, and reduces the resistance of the winding due to the absence of one frontal part in comparison with the coil section. When solving the manufacturing technology of such windings in the form of a copper bus, it is possible to increase the fill factor of the slots and the power of the generator in certain dimensions. It is possible to manufacture such a winding of cables, in this case the three-phase winding will represent three cables, which will simplify its manufacture, but the fill factor of the slots will be less. In the paper different options of meander windings are compared in order to simplify their manufacture and traditional loose windings with a different number of slots per pole and phase in order to increase the tooth pitch and simplify the manufacture of the stator core and winding.  Ref. 9, tabl. 1, fig. 5.
publisher Institute of Renewable Energy National Academy of Sciences of Ukraine
publishDate 2020
url https://ve.org.ua/index.php/journal/article/view/255
work_keys_str_mv AT permynovy featuresofdesignthepermanentmagnetwindgeneratorofhighpower6003600kw
AT monakhove featuresofdesignthepermanentmagnetwindgeneratorofhighpower6003600kw
AT volkovl featuresofdesignthepermanentmagnetwindgeneratorofhighpower6003600kw
AT permynovy osobennostiproektirovaniâvetrogeneratorovpovyšennojmoŝnosti6003600kvtsvozbuždeniemotpostoânnyhmagnitov
AT monakhove osobennostiproektirovaniâvetrogeneratorovpovyšennojmoŝnosti6003600kvtsvozbuždeniemotpostoânnyhmagnitov
AT volkovl osobennostiproektirovaniâvetrogeneratorovpovyšennojmoŝnosti6003600kvtsvozbuždeniemotpostoânnyhmagnitov
first_indexed 2024-06-01T14:33:57Z
last_indexed 2024-06-01T14:33:57Z
_version_ 1800669692608643072
spelling veorgua-article-2552020-06-28T18:06:28Z FEATURES OF DESIGN THE PERMANENT MAGNET WINDGENERATOR OF HIGH POWER (600÷3600) kW ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ВЕТРОГЕНЕРАТОРОВ ПОВЫШЕННОЙ МОЩНОСТИ (600÷3600) кВт С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ Permynov, Y. Monakhov, E. Volkov, L. gearless generators of modular design; winding options; tooth zone; meander winding; slot fill factor; the number of slots per pole and phase; the number of turns in the section; active length of conductors; electromagnetic power. безредукторные генераторы модульной конструкции, варианты обмоток, зубцовая зона, The paper is based on the results of calculations of a number of synchronous gearless direct-drive wind generators of modular design [1] with permanent magnet excitation in range of power since 600 to 3600 kW at a wind speed that is taken abroad during the design – 12.5 m/s. This approach to the study of machines allows to evaluate the complex relationship of their parameters with a minimum of assumptions, in particular, to take into account the saturation of the most loaded sections of the magnetic circuit and determine the feasibility of using some possible winding options that provide the greatest electromagnetic power to the generators, taking into account the manufacturability of their implementation; the features of the change in the tooth zone of high-power machines are shown, due to the low rotation speed of the generators in gearless installations and justified for this reason, the possibility of using the "meander" winding. In such type of winding each phase is made in the form of a single continuous conductor, which eliminates the connection of sections in phase, which takes place in traditional windings, and reduces the resistance of the winding due to the absence of one frontal part in comparison with the coil section. When solving the manufacturing technology of such windings in the form of a copper bus, it is possible to increase the fill factor of the slots and the power of the generator in certain dimensions. It is possible to manufacture such a winding of cables, in this case the three-phase winding will represent three cables, which will simplify its manufacture, but the fill factor of the slots will be less. In the paper different options of meander windings are compared in order to simplify their manufacture and traditional loose windings with a different number of slots per pole and phase in order to increase the tooth pitch and simplify the manufacture of the stator core and winding.  Ref. 9, tabl. 1, fig. 5. В основу работы положены результаты расчетов ряда синхронных безредукторных ветрогенераторов модульных конструкций [1] с возбуждением от постоянных магнитов NdFeB мощностью (600÷3600) кВт при принятой за рубежом расчетной скорости ветра – 12,5 м/с. Такой подход исследования машин позволяет оценить сложную взаимосвязь их параметров при минимуме допущений, в частности, учесть насыщение наиболее нагруженных участков  магнитной цепи и определить целесообразность применения некоторых возможных вариантов обмоток, которые обеспечивают наибольшую электромагнитную мощность генераторов с учетом технологичности их выполнения; показаны особенности изменения зубцовой зоны машин повышенной мощности, обусловленные низкой скоростью вращения генераторов в безредукторных установках и обоснована по этой причине возможность применения "меандровой" обмотки. В такой обмотке каждая фаза выполняется в виде одного непрерывного проводника, что позволяет исключить соединение секций в фазе, имеющее место в традиционных обмотках, уменьшить сопротивление обмотки благодаря отсутствию одной лобовой части в сравнении с витком секции. При решении технологии изготовления таких обмоток в виде шины возможно повышение коэффициента заполнения пазов и мощности генератора в определенных габаритах. Возможно изготовление такой обмотки кабелями, в этом случае трехфазная обмотка будет представлять три кабеля, что позволит упростить её изготовление, но коэффициент заполнения пазов будет меньше. В работе проведено сравнение различных вариантов меандровых обмоток с целью упрощения их изготовления и традиционных всыпных обмоток с различным количеством пазов на полюс и фазу с целью увеличения зубцового шага и упрощения изготовления пакета статора и обмотки. Библ. 9, табл. 1, рис. 5. Institute of Renewable Energy National Academy of Sciences of Ukraine 2020-06-28 Article Article application/pdf https://ve.org.ua/index.php/journal/article/view/255 10.36296/1819-8058.2020.2(61).54-62 Возобновляемая энергетика; № 2(61) (2020): Научно-прикладной журнал Возобновляемая энергетика; 54-62 Відновлювана енергетика; № 2(61) (2020): Науково-прикладний журнал Відновлювана енергетика; 54-62 Vidnovluvana energetika ; No. 2(61) (2020): Scientific and Applied Journal Vidnovluvana energetika; 54-62 2664-8172 1819-8058 10.36296/1819-8058.2020.2(61) uk https://ve.org.ua/index.php/journal/article/view/255/182 Copyright (c) 2020 Vidnovluvana energetika