ALGORITHM AND SOFTWARE FOR ARDUINO-BASED SYSTEM FOR PV MODULE TESTING
The work presents the implementation of software and algorithms for measuring and computing system, which is designed to determine in real conditions the electrical characteristics of photovoltaic modules by the method of variable active load. The software for the MATLAB package is describ...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Institute of Renewable Energy National Academy of Sciences of Ukraine
2021
|
Теми: | |
Онлайн доступ: | https://ve.org.ua/index.php/journal/article/view/289 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Vidnovluvana energetika |
Репозитарії
Vidnovluvana energetikaРезюме: | The work presents the implementation of software and algorithms for measuring and computing system, which is designed to determine in real conditions the electrical characteristics of photovoltaic modules by the method of variable active load. The software for the MATLAB package is described, which includes a user interface and algorithms for controlling the process of measuring current-voltage characteristics. The user interface was developed using the MATLAB Support Package for Arduino Hardware.
This software allows to perform a large number of measurements in different modes with optional connection of the pyranometer and set the required delay between readings, display I-V characteristics and power characteristics and basic parameters of FM, store data and manage already stored data, control the current measurement process, system diagnostics. Using of this system is actual for testing the current state of PV modules in field conditions, for correct determination of electrical parameters of modules. It should be noted that these parameters are not provided in full by the manufacturers, but they are essential for the diagnostics of modules on PV plants. Knowledge of the module parameters is also necessary for correct solution of optimization problems under design of PV system and for prediction of energy output in different external conditions.
The measurement of current-voltage characteristics of PV modules is realized on the basis of the microcontroller board Arduino Mega 2560, which provides switching of load resistors with electronic relays, collection and transfer of experimental data to PC by the serial port. The elements of the equivalent scheme of PV modules are calculated by the original method for solving of nonlinear equations system by a stable iterative algorithm, which is based on the decomposition of nonlinear equations on the small parameters. A number of measurements at various solar radiation and temperature was performed and dependencies of the main PV module parameters on external factors were determined. Ref. 7, fig. 4. |
---|