SUBSTANTIATION OF THE METHOD OF DETERMINATION OF THERMAL POTENTIAL OF GEOTHERMAL LAYER DEPOSITS
The analysis of geothermal resources on the territory of Ukraine, which are contained in four large artesian basins, where it is possible to extract geothermal waters for their use in energy, agriculture, industry and housing and communal services. Based on the analysis of the actual data of the exi...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Institute of Renewable Energy National Academy of Sciences of Ukraine
2021
|
| Теми: | |
| Онлайн доступ: | https://ve.org.ua/index.php/journal/article/view/293 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Vidnovluvana energetika |
Репозитарії
Vidnovluvana energetika| Резюме: | The analysis of geothermal resources on the territory of Ukraine, which are contained in four large artesian basins, where it is possible to extract geothermal waters for their use in energy, agriculture, industry and housing and communal services. Based on the analysis of the actual data of the existing well fund, it is established that aquifers are located at depths from 400 m to 7000 m. The most common formation temperatures in Ukraine are from 50 to 90 ° С. For most of the Ukrainian reservoir aquifers, which contain thermal waters, with a certain degree of probability, the following filtration scheme can be adopted: the productive horizon is infinite along the strike, homogeneous, anisotropic with averaged filtration and thermophysical parameters, pressure head and isolated from above and below by waterproof layers. To calculate the thermal potential within the geothermal field, operated in the absence of re-injection of the spent natural heat carrier, it is sufficient to solve only the hydrodynamic problem of the heat carrier filtration, since there are no inflows of heat or cold in the reservoir.
The most environmentally safe way to extract geothermal resources is geothermal circulation systems (GCS), which ensure the injection of spent geothermal coolant into the permeable underground thermal water collector. The thermal potential of hydrogeothermal deposits is calculated in a volumetric way, which consists of the heat contained in the reservoir geothermal water, in the solid skeleton of the productive horizon, as well as the heat coming from the surrounding permeable layer of the mountain massif. The magnitude of heat inflow from the mountain massif is the greatest difficulty in taking into account the thermal potential of the geothermal field. Based on the known analytical solution of the problem of heat transfer during the movement of liquid in the underground permeable layers, an equation is obtained that determines the operating time of the GCS at a constant temperature. Based on this equation, it is shown that the influence of the rock mass on the time of operation of the GCS until the temperature at the outlet of the GCS is for typical parameters of the GCS is not less than 5%. Based on these calculations, it is proved that the influence of heat inflows from the rock mass in the calculations of the thermal potential of water-bearing strata can be neglected. Ref. 8. |
|---|