Rigid, quasi-rigid and matrix rings with \((\overline{\sigma},0)\)multiplication
Let \(R\) be a ring with an endomorphism \(\sigma\). We introduce \((\overline{\sigma}, 0)\)-multiplication which is a generalization of the simple \( 0\)- multiplication. It is proved that for arbitrary positive integers \(m\leq n\) and \(n\geq 2\), \(R[x; \sigma]\) is a reduced ring if and only if...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1020 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |