Algorithmic computation of principal posets using Maple and Python

We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets \(I\) that are principal, i.e., the rational symmetric Gram matrix \(G_I : = \frac{1}{2}[C_I+ C^{tr}_I]\in\mathbb{M_I(\mathb...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Gąsiorek, Marcin, Simson, Daniel, Zając, Katarzyna
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1023
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543330325757952
author Gąsiorek, Marcin
Simson, Daniel
Zając, Katarzyna
author_facet Gąsiorek, Marcin
Simson, Daniel
Zając, Katarzyna
author_sort Gąsiorek, Marcin
baseUrl_str
collection OJS
datestamp_date 2018-04-26T01:41:11Z
description We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets \(I\) that are principal, i.e., the rational symmetric Gram matrix \(G_I : = \frac{1}{2}[C_I+ C^{tr}_I]\in\mathbb{M_I(\mathbb{Q})}\) of \(I\) is positive semi-definite of corank one, where \(C_I\in\mathbb{M}_I(\mathbb{Z})\) is the incidence matrix of \(I\). With any such a connected poset $I$, we associate a simply laced Euclidean diagram \(DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}\), the Coxeter matrix \(\mbox{ Cox}_I:= - C_I\cdot C^{-tr}_I\), its complex Coxeter spectrum \(\mathbf{specc}_I\), and a reduced Coxeter number \(\check{\mathbf{c}}_I\). One of our aims is to show that the spectrum \(\mathbf{specc}_I\) of any such a poset \(I\) determines the incidence matrix \(C_I\) (hence the poset \(I\)) uniquely, up to a \(\mathbb{Z}\)-congruence. By computer calculations, we find a complete list of principal one-peak posets \(I\) (i.e., \(I\) has a unique maximal element) of cardinality \(\leq 15\), together with \(\mathbf{specc}_I\), \(\check{\mathbf{c}}_I\), the incidence defect \(\partial_I:\mathbb{Z}^I \to\mathbb{Z}\), and the Coxeter-Euclidean type \(DI\). In case when  \(DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}\) and \(n:=|I|\) is relatively small, we show that given such a principal poset \(I\), the incidence matrix \( C_I\) is \(\mathbb{Z}\)-congruent with the non-symmetric Gram matrix \( \check G_{DI}\) of \(DI\), \(\mathbf{specc}_I = \mathbf{specc}_{DI}\) and \(\check{\mathbf{c}} _I= \check{\mathbf{c}}_{DI}\). Moreover, given a pair of principal posets \(I\) and \(J\), with \(|I|= |J| \leq 15\), the matrices \(C_I\) and \(C_J\) are \(\mathbb{Z}\)-congruent if and only if \(\mathbf{specc}_I=\mathbf{specc}_J\).
first_indexed 2026-02-08T08:01:30Z
format Article
id admjournalluguniveduua-article-1023
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:30Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-10232018-04-26T01:41:11Z Algorithmic computation of principal posets using Maple and Python Gąsiorek, Marcin Simson, Daniel Zając, Katarzyna principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix, Coxeter polynomial, Coxeter spectrum 06A11, 15A63, 68R05, 68W30 We present symbolic and numerical algorithms for a computer search in the Coxeter spectral classification problems. One of the main aims of the paper is to study finite posets \(I\) that are principal, i.e., the rational symmetric Gram matrix \(G_I : = \frac{1}{2}[C_I+ C^{tr}_I]\in\mathbb{M_I(\mathbb{Q})}\) of \(I\) is positive semi-definite of corank one, where \(C_I\in\mathbb{M}_I(\mathbb{Z})\) is the incidence matrix of \(I\). With any such a connected poset $I$, we associate a simply laced Euclidean diagram \(DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}\), the Coxeter matrix \(\mbox{ Cox}_I:= - C_I\cdot C^{-tr}_I\), its complex Coxeter spectrum \(\mathbf{specc}_I\), and a reduced Coxeter number \(\check{\mathbf{c}}_I\). One of our aims is to show that the spectrum \(\mathbf{specc}_I\) of any such a poset \(I\) determines the incidence matrix \(C_I\) (hence the poset \(I\)) uniquely, up to a \(\mathbb{Z}\)-congruence. By computer calculations, we find a complete list of principal one-peak posets \(I\) (i.e., \(I\) has a unique maximal element) of cardinality \(\leq 15\), together with \(\mathbf{specc}_I\), \(\check{\mathbf{c}}_I\), the incidence defect \(\partial_I:\mathbb{Z}^I \to\mathbb{Z}\), and the Coxeter-Euclidean type \(DI\). In case when  \(DI\in \{\widetilde{\mathbb{A}}_n, \widetilde{\mathbb{D}}_n, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7, \widetilde{\mathbb{E}}_8\}\) and \(n:=|I|\) is relatively small, we show that given such a principal poset \(I\), the incidence matrix \( C_I\) is \(\mathbb{Z}\)-congruent with the non-symmetric Gram matrix \( \check G_{DI}\) of \(DI\), \(\mathbf{specc}_I = \mathbf{specc}_{DI}\) and \(\check{\mathbf{c}} _I= \check{\mathbf{c}}_{DI}\). Moreover, given a pair of principal posets \(I\) and \(J\), with \(|I|= |J| \leq 15\), the matrices \(C_I\) and \(C_J\) are \(\mathbb{Z}\)-congruent if and only if \(\mathbf{specc}_I=\mathbf{specc}_J\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1023 Algebra and Discrete Mathematics; Vol 17, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1023/547 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix
Coxeter polynomial
Coxeter spectrum
06A11
15A63
68R05
68W30
Gąsiorek, Marcin
Simson, Daniel
Zając, Katarzyna
Algorithmic computation of principal posets using Maple and Python
title Algorithmic computation of principal posets using Maple and Python
title_full Algorithmic computation of principal posets using Maple and Python
title_fullStr Algorithmic computation of principal posets using Maple and Python
title_full_unstemmed Algorithmic computation of principal posets using Maple and Python
title_short Algorithmic computation of principal posets using Maple and Python
title_sort algorithmic computation of principal posets using maple and python
topic principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix
Coxeter polynomial
Coxeter spectrum
06A11
15A63
68R05
68W30
topic_facet principal poset; edge-bipartite graph; unit quadratic form; computer algorithm; Gram matrix
Coxeter polynomial
Coxeter spectrum
06A11
15A63
68R05
68W30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1023
work_keys_str_mv AT gasiorekmarcin algorithmiccomputationofprincipalposetsusingmapleandpython
AT simsondaniel algorithmiccomputationofprincipalposetsusingmapleandpython
AT zajackatarzyna algorithmiccomputationofprincipalposetsusingmapleandpython