Some remarks on \(\Phi\)-sharp modules

The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and \(TV\)-modules. In this paper we introduce the concepts of \(\Phi\)-sharp modules, \(\Phi\)-pseudo-Dedekind modules and \(\Phi\)-\(TV\)-modules....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Yousefian Darani, Ahmad, Rahmatinia, Mahdi
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/111
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-111
record_format ojs
spelling admjournalluguniveduua-article-1112018-04-26T02:43:18Z Some remarks on \(\Phi\)-sharp modules Yousefian Darani, Ahmad Rahmatinia, Mahdi \(\Phi\)-sharp module, \(\Phi\)-pseudo-Dedekind module, \(\Phi\)-Dedekind module, \(\Phi\)-\(TV\) module Primary 16N99, 16S99; Secondary 06C05, 16N20 The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and \(TV\)-modules. In this paper we introduce the concepts of \(\Phi\)-sharp modules, \(\Phi\)-pseudo-Dedekind modules and \(\Phi\)-\(TV\)-modules. Let \(R\) be a commutative ring with identity and set \(\mathbb{H}=\lbrace M\mid M\) is an \(R\)-module and \(\operatorname{Nil}(M)\) is a divided prime submodule of \(M\rbrace\). For an \(R\)-module \(M\in\mathbb{H}\), set \(T=(R\setminus Z(M))\cap (R\setminus Z(R))\), \(\mathfrak{T}(M)=T^{-1}(M)\) and \(P:=(\operatorname{Nil}(M):_{R}M)\). In this case the mapping \(\Phi:\mathfrak{T}(M)\longrightarrow M_{P}\) given by \(\Phi(x/s)=x/s\) is an \(R\)-module homomorphism. The restriction of \(\Phi\) to \(M\) is also an \(R\)-module homomorphism from \(M\) in to \(M_{P}\) given by \(\Phi(m/1)=m/1\) for every \(m\in M\). An \(R\)-module \(M\in \mathbb{H}\) is called a \(\Phi\)-sharp module if for every nonnil submodules \(N,L\) of \(M\) and every nonnil ideal \(I\) of \(R\) with \(N\supseteq IL\), there exist a nonnil ideal \(I'\supseteq I\) of \(R\) and a submodule \(L'\supseteq L\) of \(M\) such that \(N=I'L'\). We prove that Many of the properties and characterizations of sharp modules may be extended to \(\Phi\)-sharp modules, but some can not. Lugansk National Taras Shevchenko University 2018-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/111 Algebra and Discrete Mathematics; Vol 24, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/111/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/111/26 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:43:18Z
collection OJS
language English
topic \(\Phi\)-sharp module
\(\Phi\)-pseudo-Dedekind module
\(\Phi\)-Dedekind module
\(\Phi\)-\(TV\) module
Primary 16N99
16S99; Secondary 06C05
16N20
spellingShingle \(\Phi\)-sharp module
\(\Phi\)-pseudo-Dedekind module
\(\Phi\)-Dedekind module
\(\Phi\)-\(TV\) module
Primary 16N99
16S99; Secondary 06C05
16N20
Yousefian Darani, Ahmad
Rahmatinia, Mahdi
Some remarks on \(\Phi\)-sharp modules
topic_facet \(\Phi\)-sharp module
\(\Phi\)-pseudo-Dedekind module
\(\Phi\)-Dedekind module
\(\Phi\)-\(TV\) module
Primary 16N99
16S99; Secondary 06C05
16N20
format Article
author Yousefian Darani, Ahmad
Rahmatinia, Mahdi
author_facet Yousefian Darani, Ahmad
Rahmatinia, Mahdi
author_sort Yousefian Darani, Ahmad
title Some remarks on \(\Phi\)-sharp modules
title_short Some remarks on \(\Phi\)-sharp modules
title_full Some remarks on \(\Phi\)-sharp modules
title_fullStr Some remarks on \(\Phi\)-sharp modules
title_full_unstemmed Some remarks on \(\Phi\)-sharp modules
title_sort some remarks on \(\phi\)-sharp modules
description The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and \(TV\)-modules. In this paper we introduce the concepts of \(\Phi\)-sharp modules, \(\Phi\)-pseudo-Dedekind modules and \(\Phi\)-\(TV\)-modules. Let \(R\) be a commutative ring with identity and set \(\mathbb{H}=\lbrace M\mid M\) is an \(R\)-module and \(\operatorname{Nil}(M)\) is a divided prime submodule of \(M\rbrace\). For an \(R\)-module \(M\in\mathbb{H}\), set \(T=(R\setminus Z(M))\cap (R\setminus Z(R))\), \(\mathfrak{T}(M)=T^{-1}(M)\) and \(P:=(\operatorname{Nil}(M):_{R}M)\). In this case the mapping \(\Phi:\mathfrak{T}(M)\longrightarrow M_{P}\) given by \(\Phi(x/s)=x/s\) is an \(R\)-module homomorphism. The restriction of \(\Phi\) to \(M\) is also an \(R\)-module homomorphism from \(M\) in to \(M_{P}\) given by \(\Phi(m/1)=m/1\) for every \(m\in M\). An \(R\)-module \(M\in \mathbb{H}\) is called a \(\Phi\)-sharp module if for every nonnil submodules \(N,L\) of \(M\) and every nonnil ideal \(I\) of \(R\) with \(N\supseteq IL\), there exist a nonnil ideal \(I'\supseteq I\) of \(R\) and a submodule \(L'\supseteq L\) of \(M\) such that \(N=I'L'\). We prove that Many of the properties and characterizations of sharp modules may be extended to \(\Phi\)-sharp modules, but some can not.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/111
work_keys_str_mv AT yousefiandaraniahmad someremarksonphisharpmodules
AT rahmatiniamahdi someremarksonphisharpmodules
first_indexed 2025-12-02T15:34:09Z
last_indexed 2025-12-02T15:34:09Z
_version_ 1850411213995900928