On derived \(\pi\)-length of a finite \(\pi\)-solvable group with supersolvable \(\pi\)-Hall subgroup
It is proved that if \(\pi\)-Hall subgroup is a supersolvable group then the derived \(\pi\)-length of a \(\pi\)-solvable group \(G\) is at most \(1+ \max_{r\in \pi}l_r^a(G),\) where \(l_r^a(G)\) is the derived \(r\)-length of a \(\pi\)-solvable group \(G.\)
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1160 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |