Symmetries of automata

For a given reachable automaton \(\mathcal A\), we prove that the (state-) endomorphism monoid \(End({\mathcal A})\) divides its characteristic monoid \(M({\mathcal A})\). Hence so does its (state-)automorphism group \(Aut({\mathcal A})\), and, for finite \(\mathcal A\), \(Aut(\mathcal A)\) is a hom...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Egri-Nagy, Attila, Nehaniv, Chrystopher L.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543132038987776
author Egri-Nagy, Attila
Nehaniv, Chrystopher L.
author_facet Egri-Nagy, Attila
Nehaniv, Chrystopher L.
author_sort Egri-Nagy, Attila
baseUrl_str
collection OJS
datestamp_date 2018-05-17T07:50:53Z
description For a given reachable automaton \(\mathcal A\), we prove that the (state-) endomorphism monoid \(End({\mathcal A})\) divides its characteristic monoid \(M({\mathcal A})\). Hence so does its (state-)automorphism group \(Aut({\mathcal A})\), and, for finite \(\mathcal A\), \(Aut(\mathcal A)\) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group \(G\) of \(\mathcal A\), a finite automaton \(\mathcal A\) (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of \(M(\mathcal A)\), namely the symmetry group \(G\) and the quotient of \(M(\mathcal A)\) induced by the action of \(G\). Moreover, this division is an embedding if \(M(\mathcal A)\) is transitive on states of \(\mathcal A\). For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.
first_indexed 2026-02-08T07:57:37Z
format Article
id admjournalluguniveduua-article-1175
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:57:37Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-11752018-05-17T07:50:53Z Symmetries of automata Egri-Nagy, Attila Nehaniv, Chrystopher L. 20B25, 20E22, 20M20, 20M35, 68Q70 For a given reachable automaton \(\mathcal A\), we prove that the (state-) endomorphism monoid \(End({\mathcal A})\) divides its characteristic monoid \(M({\mathcal A})\). Hence so does its (state-)automorphism group \(Aut({\mathcal A})\), and, for finite \(\mathcal A\), \(Aut(\mathcal A)\) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group \(G\) of \(\mathcal A\), a finite automaton \(\mathcal A\) (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of \(M(\mathcal A)\), namely the symmetry group \(G\) and the quotient of \(M(\mathcal A)\) induced by the action of \(G\). Moreover, this division is an embedding if \(M(\mathcal A)\) is transitive on states of \(\mathcal A\). For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element. Lugansk National Taras Shevchenko University 2018-05-17 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175 Algebra and Discrete Mathematics; Vol 19, No 1 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175/664 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle
20B25
20E22
20M20
20M35
68Q70
Egri-Nagy, Attila
Nehaniv, Chrystopher L.
Symmetries of automata
title Symmetries of automata
title_full Symmetries of automata
title_fullStr Symmetries of automata
title_full_unstemmed Symmetries of automata
title_short Symmetries of automata
title_sort symmetries of automata
topic
20B25
20E22
20M20
20M35
68Q70
topic_facet
20B25
20E22
20M20
20M35
68Q70
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175
work_keys_str_mv AT egrinagyattila symmetriesofautomata
AT nehanivchrystopherl symmetriesofautomata