Global outer connected domination number of a graph

For a given graph \(G=(V,E)\), a dominating set \(D \subseteq V(G)\) is said to be an outer connected dominating set if \(D=V(G)\) or \(G-D\) is connected. The outer connected domination number of a graph \(G\), denoted by \(\widetilde{\gamma}_c(G)\), is the cardinality of a minimum outer connected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Alishahi, Morteza, Mojdeh, Doost Ali
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/126
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:For a given graph \(G=(V,E)\), a dominating set \(D \subseteq V(G)\) is said to be an outer connected dominating set if \(D=V(G)\) or \(G-D\) is connected. The outer connected domination number of a graph \(G\), denoted by \(\widetilde{\gamma}_c(G)\), is the cardinality of a minimum outer connected dominating set of \(G\). A set \(S \subseteq V(G)\) is said to be a global outer connected dominating set of a graph \(G\) if \(S\) is an outer connected dominating set of \(G\) and \(\overline G\). The global outer connected domination number of a graph \(G\), denoted by \(\widetilde{\gamma}_{gc}(G)\), is the cardinality of a minimum global outer connected dominating set of \(G\). In this paper we obtain some bounds for outer connected domination numbers and global outer connected domination numbers of graphs. In particular, we show that for connected graph \(G\ne K_1\),  \( \max\{{n-\frac{m+1}{2}}, \frac{5n+2m-n^2-2}{4}\} \leq \widetilde{\gamma}_{gc}(G) \leq \min\{m(G),m(\overline G)\}\). Finally, under the conditions, we show the equality  of global outer connected domination numbers and outer connected domination numbers for family of trees.