On the lattice of weak topologies on the bicyclic monoid with adjoined zero
A Hausdorff topology \(\tau\) on the bicyclic monoid with adjoined zero \(\mathcal{C}^0\) is called weak if it is contained in the coarsest inverse semigroup topology on \(\mathcal{C}^0\). We show that the lattice \(\mathcal{W}\) of all weak shift-continuous topologies on \(\mathcal{C}^0\) is isomor...
Saved in:
| Date: | 2020 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2020
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1459 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |