On the lattice of weak topologies on the bicyclic monoid with adjoined zero

A Hausdorff topology \(\tau\) on the bicyclic monoid with adjoined zero \(\mathcal{C}^0\) is called weak if it is contained in the coarsest inverse semigroup topology on \(\mathcal{C}^0\). We show that the lattice \(\mathcal{W}\) of all weak shift-continuous topologies on \(\mathcal{C}^0\) is isomor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Bardyla, S., Gutik, O.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2020
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1459
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1459
record_format ojs
spelling admjournalluguniveduua-article-14592021-01-05T07:11:25Z On the lattice of weak topologies on the bicyclic monoid with adjoined zero Bardyla, S. Gutik, O. lattice of topologies, bicyclic monoid, shift-continuous topology 22A15, 06B23 A Hausdorff topology \(\tau\) on the bicyclic monoid with adjoined zero \(\mathcal{C}^0\) is called weak if it is contained in the coarsest inverse semigroup topology on \(\mathcal{C}^0\). We show that the lattice \(\mathcal{W}\) of all weak shift-continuous topologies on \(\mathcal{C}^0\) is isomorphic to the lattice \(\mathcal{SIF}^1{\times}\mathcal{SIF}^1\) where \(\mathcal{SIF}^1\) is the set of all shift-invariant filters on \(\omega\) with an attached element \(1\) endowed with the following partial order: \(\mathcal{F}\leq \mathcal{G}\) if and only if \(\mathcal{G}=1\) or \(\mathcal{F}\subset \mathcal{G}\). Also, we investigate cardinal characteristics of the lattice \(\mathcal{W}\). In particular, we prove that \(\mathcal{W}\) contains an antichain of cardinality \(2^{\mathfrak{c}}\) and a well-ordered chain of cardinality \(\mathfrak{c}\). Moreover, there exists a well-ordered chain of first-countable weak topologies of order type \(\mathfrak{t}\). Lugansk National Taras Shevchenko University Austrian Science Fund FWF (Grant I 3709 N35) 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1459 10.12958/adm1459 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1459/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1459/585 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-05T07:11:25Z
collection OJS
language English
topic lattice of topologies
bicyclic monoid
shift-continuous topology
22A15
06B23
spellingShingle lattice of topologies
bicyclic monoid
shift-continuous topology
22A15
06B23
Bardyla, S.
Gutik, O.
On the lattice of weak topologies on the bicyclic monoid with adjoined zero
topic_facet lattice of topologies
bicyclic monoid
shift-continuous topology
22A15
06B23
format Article
author Bardyla, S.
Gutik, O.
author_facet Bardyla, S.
Gutik, O.
author_sort Bardyla, S.
title On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_short On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_full On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_fullStr On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_full_unstemmed On the lattice of weak topologies on the bicyclic monoid with adjoined zero
title_sort on the lattice of weak topologies on the bicyclic monoid with adjoined zero
description A Hausdorff topology \(\tau\) on the bicyclic monoid with adjoined zero \(\mathcal{C}^0\) is called weak if it is contained in the coarsest inverse semigroup topology on \(\mathcal{C}^0\). We show that the lattice \(\mathcal{W}\) of all weak shift-continuous topologies on \(\mathcal{C}^0\) is isomorphic to the lattice \(\mathcal{SIF}^1{\times}\mathcal{SIF}^1\) where \(\mathcal{SIF}^1\) is the set of all shift-invariant filters on \(\omega\) with an attached element \(1\) endowed with the following partial order: \(\mathcal{F}\leq \mathcal{G}\) if and only if \(\mathcal{G}=1\) or \(\mathcal{F}\subset \mathcal{G}\). Also, we investigate cardinal characteristics of the lattice \(\mathcal{W}\). In particular, we prove that \(\mathcal{W}\) contains an antichain of cardinality \(2^{\mathfrak{c}}\) and a well-ordered chain of cardinality \(\mathfrak{c}\). Moreover, there exists a well-ordered chain of first-countable weak topologies of order type \(\mathfrak{t}\).
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1459
work_keys_str_mv AT bardylas onthelatticeofweaktopologiesonthebicyclicmonoidwithadjoinedzero
AT gutiko onthelatticeofweaktopologiesonthebicyclicmonoidwithadjoinedzero
first_indexed 2025-12-02T15:30:07Z
last_indexed 2025-12-02T15:30:07Z
_version_ 1850412045357285376