On the structure of Leibniz algebras whose subalgebras are ideals or core-free
An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leib...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2020
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |