On the structure of Leibniz algebras whose subalgebras are ideals or core-free

An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leib...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Chupordia, V. A., Kurdachenko, L. A., Semko, N. N.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics