On the structure of Leibniz algebras whose subalgebras are ideals or core-free

An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Chupordia, V. A., Kurdachenko, L. A., Semko, N. N.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2020
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-1533
record_format ojs
spelling admjournalluguniveduua-article-15332020-07-08T07:13:20Z On the structure of Leibniz algebras whose subalgebras are ideals or core-free Chupordia, V. A. Kurdachenko, L. A. Semko, N. N. 17A32, 17A60, 17A99 An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leibniz algebra \(L\) is called a core-free, if \(S\) does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free. Lugansk National Taras Shevchenko University Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533 10.12958/adm1533 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1533/659 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-07-08T07:13:20Z
collection OJS
language English
topic
17A32
17A60
17A99
spellingShingle
17A32
17A60
17A99
Chupordia, V. A.
Kurdachenko, L. A.
Semko, N. N.
On the structure of Leibniz algebras whose subalgebras are ideals or core-free
topic_facet
17A32
17A60
17A99
format Article
author Chupordia, V. A.
Kurdachenko, L. A.
Semko, N. N.
author_facet Chupordia, V. A.
Kurdachenko, L. A.
Semko, N. N.
author_sort Chupordia, V. A.
title On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_short On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_full On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_fullStr On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_full_unstemmed On the structure of Leibniz algebras whose subalgebras are ideals or core-free
title_sort on the structure of leibniz algebras whose subalgebras are ideals or core-free
description An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leibniz algebra \(L\) is called a core-free, if \(S\) does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533
work_keys_str_mv AT chupordiava onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
AT kurdachenkola onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
AT semkonn onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree
first_indexed 2025-12-02T15:47:26Z
last_indexed 2025-12-02T15:47:26Z
_version_ 1850412049849384960