On the structure of Leibniz algebras whose subalgebras are ideals or core-free
An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leib...
Saved in:
| Date: | 2020 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2020
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| _version_ | 1856543055436316672 |
|---|---|
| author | Chupordia, V. A. Kurdachenko, L. A. Semko, N. N. |
| author_facet | Chupordia, V. A. Kurdachenko, L. A. Semko, N. N. |
| author_sort | Chupordia, V. A. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2020-07-08T07:13:20Z |
| description | An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leibniz algebra \(L\) is called a core-free, if \(S\) does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free. |
| first_indexed | 2025-12-02T15:47:26Z |
| format | Article |
| id | admjournalluguniveduua-article-1533 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:47:26Z |
| publishDate | 2020 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-15332020-07-08T07:13:20Z On the structure of Leibniz algebras whose subalgebras are ideals or core-free Chupordia, V. A. Kurdachenko, L. A. Semko, N. N. 17A32, 17A60, 17A99 An algebra \(L\) over a field \(F\) is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: \([[a, b], c] = [a, [b, c]] - [b, [a, c]]\) for all \(a, b, c \in L\). Leibniz algebras are generalizations of Lie algebras. A subalgebra \(S\) of a Leibniz algebra \(L\) is called a core-free, if \(S\) does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free. Lugansk National Taras Shevchenko University Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533 10.12958/adm1533 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1533/659 Copyright (c) 2020 Algebra and Discrete Mathematics |
| spellingShingle | 17A32 17A60 17A99 Chupordia, V. A. Kurdachenko, L. A. Semko, N. N. On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title | On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_full | On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_fullStr | On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_full_unstemmed | On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_short | On the structure of Leibniz algebras whose subalgebras are ideals or core-free |
| title_sort | on the structure of leibniz algebras whose subalgebras are ideals or core-free |
| topic | 17A32 17A60 17A99 |
| topic_facet | 17A32 17A60 17A99 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1533 |
| work_keys_str_mv | AT chupordiava onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree AT kurdachenkola onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree AT semkonn onthestructureofleibnizalgebraswhosesubalgebrasareidealsorcorefree |