Endomorphisms of Clifford semigroups with injective structure homomorphisms
In the present paper, we study semigroups of endomorphisms on Clifford semigroups with injective structure homomorphisms, where the semilattice has a least element. We describe such Clifford semigroups having a regular endomorphism monoid. If the endomorphism monoid on the Clifford semigroup is comp...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2021
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1543 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | In the present paper, we study semigroups of endomorphisms on Clifford semigroups with injective structure homomorphisms, where the semilattice has a least element. We describe such Clifford semigroups having a regular endomorphism monoid. If the endomorphism monoid on the Clifford semigroup is completely regular then the corresponding semilattice has at most two elements. We characterize all Clifford semigroups \(G_{\alpha}\cup G_{\beta}\) (\(\alpha >\beta \)) with an injective structure homomorphism, where \(G_{\alpha}\) has no proper subgroup, such that the endomorphism monoid is completely regular. In particular, we consider the case that the structure homomorphism is bijective. |
|---|