On extension of classical Baer results to Poisson algebras

In this paper we prove that if \(P\) is a Poisson algebra and the \(n\)-th hypercenter (center) of \(P\) has a finite codimension, then \(P\) includes a finite-dimensional ideal \(K\) such that \(P/K\) is nilpotent (abelian). As a corollary, we show that if the \(n\)th hypercenter of a Poisson algeb...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kurdachenko, L. A., Pypka, A. A., Subbotin, I. Ya.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2021
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1758
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543139413622784
author Kurdachenko, L. A.
Pypka, A. A.
Subbotin, I. Ya.
author_facet Kurdachenko, L. A.
Pypka, A. A.
Subbotin, I. Ya.
author_sort Kurdachenko, L. A.
baseUrl_str
collection OJS
datestamp_date 2021-04-11T06:11:31Z
description In this paper we prove that if \(P\) is a Poisson algebra and the \(n\)-th hypercenter (center) of \(P\) has a finite codimension, then \(P\) includes a finite-dimensional ideal \(K\) such that \(P/K\) is nilpotent (abelian). As a corollary, we show that if the \(n\)th hypercenter of a Poisson algebra \(P\) (over some specific field) has a finite codimension and \(P\) does not contain zero divisors, then \(P\) is an abelian algebra.
first_indexed 2026-02-08T07:58:29Z
format Article
id admjournalluguniveduua-article-1758
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:29Z
publishDate 2021
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-17582021-04-11T06:11:31Z On extension of classical Baer results to Poisson algebras Kurdachenko, L. A. Pypka, A. A. Subbotin, I. Ya. Poisson algebra, Lie algebra, subalgebra, ideal, center, hypercenter, zero divisor, finite dimension, nilpotency 17B63, 17B65 In this paper we prove that if \(P\) is a Poisson algebra and the \(n\)-th hypercenter (center) of \(P\) has a finite codimension, then \(P\) includes a finite-dimensional ideal \(K\) such that \(P/K\) is nilpotent (abelian). As a corollary, we show that if the \(n\)th hypercenter of a Poisson algebra \(P\) (over some specific field) has a finite codimension and \(P\) does not contain zero divisors, then \(P\) is an abelian algebra. Lugansk National Taras Shevchenko University National Research Foundation of Ukraine 2021-04-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1758 10.12958/adm1758 Algebra and Discrete Mathematics; Vol 31, No 1 (2021) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1758/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/1758/821 Copyright (c) 2021 Algebra and Discrete Mathematics
spellingShingle Poisson algebra
Lie algebra
subalgebra
ideal
center
hypercenter
zero divisor
finite dimension
nilpotency
17B63
17B65
Kurdachenko, L. A.
Pypka, A. A.
Subbotin, I. Ya.
On extension of classical Baer results to Poisson algebras
title On extension of classical Baer results to Poisson algebras
title_full On extension of classical Baer results to Poisson algebras
title_fullStr On extension of classical Baer results to Poisson algebras
title_full_unstemmed On extension of classical Baer results to Poisson algebras
title_short On extension of classical Baer results to Poisson algebras
title_sort on extension of classical baer results to poisson algebras
topic Poisson algebra
Lie algebra
subalgebra
ideal
center
hypercenter
zero divisor
finite dimension
nilpotency
17B63
17B65
topic_facet Poisson algebra
Lie algebra
subalgebra
ideal
center
hypercenter
zero divisor
finite dimension
nilpotency
17B63
17B65
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1758
work_keys_str_mv AT kurdachenkola onextensionofclassicalbaerresultstopoissonalgebras
AT pypkaaa onextensionofclassicalbaerresultstopoissonalgebras
AT subbotiniya onextensionofclassicalbaerresultstopoissonalgebras