On the structure of low-dimensional Leibniz algebras: some revision

Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([\,\cdot\,{,}\,\cdot\,]\). Then \(L\) is called a left Leibniz algebra if \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We describe the inner structure of left Leibniz algebras having dimension 3.

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Kurdachenko, L. A., Pypka, O. O., Subbotin, I. Ya.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2036
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-2036
record_format ojs
spelling admjournalluguniveduua-article-20362023-02-08T16:55:57Z On the structure of low-dimensional Leibniz algebras: some revision Kurdachenko, L. A. Pypka, O. O. Subbotin, I. Ya. Leibniz algebra, nilpotent Leibniz algebra, dimension 17A32, 17A60, 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([\,\cdot\,{,}\,\cdot\,]\). Then \(L\) is called a left Leibniz algebra if \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We describe the inner structure of left Leibniz algebras having dimension 3. Lugansk National Taras Shevchenko University Isaac Newton Institute for Mathematical Sciences University of Edinburgh 2023-02-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2036 10.12958/adm2036 Algebra and Discrete Mathematics; Vol 34, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2036/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2036/1028 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-02-08T16:55:57Z
collection OJS
language English
topic Leibniz algebra
nilpotent Leibniz algebra
dimension
17A32
17A60
17A99
spellingShingle Leibniz algebra
nilpotent Leibniz algebra
dimension
17A32
17A60
17A99
Kurdachenko, L. A.
Pypka, O. O.
Subbotin, I. Ya.
On the structure of low-dimensional Leibniz algebras: some revision
topic_facet Leibniz algebra
nilpotent Leibniz algebra
dimension
17A32
17A60
17A99
format Article
author Kurdachenko, L. A.
Pypka, O. O.
Subbotin, I. Ya.
author_facet Kurdachenko, L. A.
Pypka, O. O.
Subbotin, I. Ya.
author_sort Kurdachenko, L. A.
title On the structure of low-dimensional Leibniz algebras: some revision
title_short On the structure of low-dimensional Leibniz algebras: some revision
title_full On the structure of low-dimensional Leibniz algebras: some revision
title_fullStr On the structure of low-dimensional Leibniz algebras: some revision
title_full_unstemmed On the structure of low-dimensional Leibniz algebras: some revision
title_sort on the structure of low-dimensional leibniz algebras: some revision
description Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([\,\cdot\,{,}\,\cdot\,]\). Then \(L\) is called a left Leibniz algebra if \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We describe the inner structure of left Leibniz algebras having dimension 3.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2036
work_keys_str_mv AT kurdachenkola onthestructureoflowdimensionalleibnizalgebrassomerevision
AT pypkaoo onthestructureoflowdimensionalleibnizalgebrassomerevision
AT subbotiniya onthestructureoflowdimensionalleibnizalgebrassomerevision
first_indexed 2025-12-02T15:44:16Z
last_indexed 2025-12-02T15:44:16Z
_version_ 1850411850532913152