Quasi-idempotents in certain transformation semigroups

Let \(P_{n}\) and \(T_{n}\) be the partial transformations semigroup and the (full) transformations semigroup on the set \(X_{n}=\{1,\ldots ,n\}\), respectively. In this paper, we first state the orbit structure of quasi-idempotents (non-idempotent element whose square is an idempotent) in \(P_{n}\)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автор: Bugay, Leyla
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2223
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543250383372288
author Bugay, Leyla
author_facet Bugay, Leyla
author_sort Bugay, Leyla
baseUrl_str
collection OJS
datestamp_date 2024-06-27T08:42:43Z
description Let \(P_{n}\) and \(T_{n}\) be the partial transformations semigroup and the (full) transformations semigroup on the set \(X_{n}=\{1,\ldots ,n\}\), respectively. In this paper, we first state the orbit structure of quasi-idempotents (non-idempotent element whose square is an idempotent) in \(P_{n}\). Then, for \(2\leq r\leq n-1\), we find the quasi-idempotent ranks of the subsemigroup \(PK(n,r)=\{\alpha \in P_{n}: \mathrm{h}(\alpha) \leq r\}\) of \(P_{n}\), and the subsemigroup \(K(n,r)=\{\alpha \in T_{n}: \mathrm{h}(\alpha) \leq r\}\) of \(T_{n}\), where \(\mathrm{h}(\alpha)\) denotes the cardinality of the image set of \(\alpha\).
first_indexed 2026-02-08T08:00:14Z
format Article
id admjournalluguniveduua-article-2223
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:00:14Z
publishDate 2024
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-22232024-06-27T08:42:43Z Quasi-idempotents in certain transformation semigroups Bugay, Leyla partial (full) transformations semigroup, quasi-idempotent, orbit, rank 20M20 Let \(P_{n}\) and \(T_{n}\) be the partial transformations semigroup and the (full) transformations semigroup on the set \(X_{n}=\{1,\ldots ,n\}\), respectively. In this paper, we first state the orbit structure of quasi-idempotents (non-idempotent element whose square is an idempotent) in \(P_{n}\). Then, for \(2\leq r\leq n-1\), we find the quasi-idempotent ranks of the subsemigroup \(PK(n,r)=\{\alpha \in P_{n}: \mathrm{h}(\alpha) \leq r\}\) of \(P_{n}\), and the subsemigroup \(K(n,r)=\{\alpha \in T_{n}: \mathrm{h}(\alpha) \leq r\}\) of \(T_{n}\), where \(\mathrm{h}(\alpha)\) denotes the cardinality of the image set of \(\alpha\). Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2223 10.12958/adm2223 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2223/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2223/1158 Copyright (c) 2024 Algebra and Discrete Mathematics
spellingShingle partial (full) transformations semigroup
quasi-idempotent
orbit
rank
20M20
Bugay, Leyla
Quasi-idempotents in certain transformation semigroups
title Quasi-idempotents in certain transformation semigroups
title_full Quasi-idempotents in certain transformation semigroups
title_fullStr Quasi-idempotents in certain transformation semigroups
title_full_unstemmed Quasi-idempotents in certain transformation semigroups
title_short Quasi-idempotents in certain transformation semigroups
title_sort quasi-idempotents in certain transformation semigroups
topic partial (full) transformations semigroup
quasi-idempotent
orbit
rank
20M20
topic_facet partial (full) transformations semigroup
quasi-idempotent
orbit
rank
20M20
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2223
work_keys_str_mv AT bugayleyla quasiidempotentsincertaintransformationsemigroups