Spectral multiplicity functions of adjacency operators of graphs and cospectral infinite graphs

The adjacency operator of a graph has a spectrum and a class of scalar-valued spectral measures which have been systematically analyzed; it also has a spectral multiplicity function which has been less studied. The first purpose of this article is to review some examples of infinite graphs for which...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Author: de la Harpe, Pierre
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2024
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2224
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:The adjacency operator of a graph has a spectrum and a class of scalar-valued spectral measures which have been systematically analyzed; it also has a spectral multiplicity function which has been less studied. The first purpose of this article is to review some examples of infinite graphs for which the spectral multiplicity function of the adjacency operator has been determined. The second purpose of this article is to show explicit examples of infinite connected graphs which are cospectral, i.e., which have unitarily equivalent adjacency operators, and also explicit examples of infinite connected graphs which are uniquely determined by their spectrum.