On the algebra of derivations of some Leibniz algebras
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz al...
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2024
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| _version_ | 1856543144972124160 |
|---|---|
| author | Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
| author_facet | Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
| author_sort | Kurdachenko, Leonid A. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2024-09-23T09:29:11Z |
| description | Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions. |
| first_indexed | 2026-02-08T07:57:49Z |
| format | Article |
| id | admjournalluguniveduua-article-2316 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2026-02-08T07:57:49Z |
| publishDate | 2024 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-23162024-09-23T09:29:11Z On the algebra of derivations of some Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, Lie algebra, derivation, endomorphism 17A32; 17A60; 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 10.12958/adm2316 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2316/1244 Copyright (c) 2024 Algebra and Discrete Mathematics |
| spellingShingle | Leibniz algebra Lie algebra derivation endomorphism 17A32 17A60 17A99 Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. On the algebra of derivations of some Leibniz algebras |
| title | On the algebra of derivations of some Leibniz algebras |
| title_full | On the algebra of derivations of some Leibniz algebras |
| title_fullStr | On the algebra of derivations of some Leibniz algebras |
| title_full_unstemmed | On the algebra of derivations of some Leibniz algebras |
| title_short | On the algebra of derivations of some Leibniz algebras |
| title_sort | on the algebra of derivations of some leibniz algebras |
| topic | Leibniz algebra Lie algebra derivation endomorphism 17A32 17A60 17A99 |
| topic_facet | Leibniz algebra Lie algebra derivation endomorphism 17A32 17A60 17A99 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 |
| work_keys_str_mv | AT kurdachenkoleonida onthealgebraofderivationsofsomeleibnizalgebras AT semkomykolam onthealgebraofderivationsofsomeleibnizalgebras AT subbotinigorya onthealgebraofderivationsofsomeleibnizalgebras |