On algebras that are sums of two subalgebras
We study an associative algebra \(A\) over an arbitrary field \(K\) that is a sum of two subalgebras \(B\) and \(C\) (i.e. \(A=B+C)\). Let \(\mathcal{M}\) be the class of algebras such that \(B, C\in \mathcal{M}\) implies \(A\in \mathcal{M}\). We prove, under some natural additional assumptions on \...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2025
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2396 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |