On algebras that are sums of two subalgebras

We study an associative algebra \(A\) over an arbitrary field \(K\) that is a sum of two subalgebras \(B\) and \(C\) (i.e. \(A=B+C)\). Let \(\mathcal{M}\) be the class of algebras such that \(B, C\in \mathcal{M}\) implies \(A\in \mathcal{M}\). We prove, under some natural additional assumptions on \...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Kępczyk, Marek
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2396
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We study an associative algebra \(A\) over an arbitrary field \(K\) that is a sum of two subalgebras \(B\) and \(C\) (i.e. \(A=B+C)\). Let \(\mathcal{M}\) be the class of algebras such that \(B, C\in \mathcal{M}\) implies \(A\in \mathcal{M}\). We prove, under some natural additional assumptions on \(\mathcal{M}\), that if \(B\) and \(C\) have ideals of finite codimension from \(\mathcal{M}\), then \(A\) has an ideal of finite codimension from \(\mathcal{M}\), too. In particular we show that if \(B\) and \(C\) have left T-nilpotent ideals (or nil \(PI\) ideals) of finite codimension, then \(A\) has a left T-nilpotent ideal (or nil \(PI\) ideal) of finite codimension.