Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
We give a complete description of connected non-negative Dynkin type Dyn\(_I=\mathbb{E}_m\) posets and prove that the number of such posets is finite. Moreover, by means of computer assisted analysis, we give a complete Coxeter classification of this class and prove that the pair (Dyn\(_I=\mathbb{E}...
Збережено в:
| Дата: | 2026 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2026
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2408 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | We give a complete description of connected non-negative Dynkin type Dyn\(_I=\mathbb{E}_m\) posets and prove that the number of such posets is finite. Moreover, by means of computer assisted analysis, we give a complete Coxeter classification of this class and prove that the pair (Dyn\(_I=\mathbb{E}_m,\) specc\(_I\)), where specc\(_I\subseteq\mathbb{C}\) denotes the Coxeter spectrum of \(I\), determines \(I\) uniquely, up to the strong Gram \(\mathbb{Z}\)-congruence. |
|---|