Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)

We give a complete description of connected non-negative Dynkin type Dyn\(_I=\mathbb{E}_m\) posets and prove that the number of such posets is finite. Moreover, by means of computer assisted analysis, we give a complete Coxeter classification of this class and prove that the pair (Dyn\(_I=\mathbb{E}...

Full description

Saved in:
Bibliographic Details
Date:2026
Main Author: Gąsiorek, Marcin
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2026
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2408
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543304825438208
author Gąsiorek, Marcin
author_facet Gąsiorek, Marcin
author_sort Gąsiorek, Marcin
baseUrl_str
collection OJS
datestamp_date 2026-01-11T10:11:21Z
description We give a complete description of connected non-negative Dynkin type Dyn\(_I=\mathbb{E}_m\) posets and prove that the number of such posets is finite. Moreover, by means of computer assisted analysis, we give a complete Coxeter classification of this class and prove that the pair (Dyn\(_I=\mathbb{E}_m,\) specc\(_I\)), where specc\(_I\subseteq\mathbb{C}\) denotes the Coxeter spectrum of \(I\), determines \(I\) uniquely, up to the strong Gram \(\mathbb{Z}\)-congruence.
first_indexed 2026-02-08T08:01:06Z
format Article
id admjournalluguniveduua-article-2408
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:06Z
publishDate 2026
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-24082026-01-11T10:11:21Z Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\) Gąsiorek, Marcin non-negative poset, unit quadratic form, Coxeter-Dynkin type, Coxeter spectrum 06A07, 06A11, 11E04, 68W30 We give a complete description of connected non-negative Dynkin type Dyn\(_I=\mathbb{E}_m\) posets and prove that the number of such posets is finite. Moreover, by means of computer assisted analysis, we give a complete Coxeter classification of this class and prove that the pair (Dyn\(_I=\mathbb{E}_m,\) specc\(_I\)), where specc\(_I\subseteq\mathbb{C}\) denotes the Coxeter spectrum of \(I\), determines \(I\) uniquely, up to the strong Gram \(\mathbb{Z}\)-congruence. Lugansk National Taras Shevchenko University 2026-01-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2408 10.12958/adm2408 Algebra and Discrete Mathematics; Vol 40, No 2 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2408/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2408/1341 Copyright (c) 2026 Algebra and Discrete Mathematics
spellingShingle non-negative poset
unit quadratic form
Coxeter-Dynkin type
Coxeter spectrum
06A07
06A11
11E04
68W30
Gąsiorek, Marcin
Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
title Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
title_full Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
title_fullStr Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
title_full_unstemmed Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
title_short Coxeter spectral classification of non-negative posets of Dynkin type \(\mathbb{E}_m\)
title_sort coxeter spectral classification of non-negative posets of dynkin type \(\mathbb{e}_m\)
topic non-negative poset
unit quadratic form
Coxeter-Dynkin type
Coxeter spectrum
06A07
06A11
11E04
68W30
topic_facet non-negative poset
unit quadratic form
Coxeter-Dynkin type
Coxeter spectrum
06A07
06A11
11E04
68W30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2408
work_keys_str_mv AT gasiorekmarcin coxeterspectralclassificationofnonnegativeposetsofdynkintypemathbbem