Divisor function of the Gaussian integers weighted by the Kloosterman sum

We study the mean values of the divisor function \(\tau(\omega)\) over the ring of Gaussian integers \(G\) when weighted by Kloosterman sums. For \(\alpha,\beta,\gamma\in{G}\) with \(\gamma\neq0\), let \(K(\alpha,\beta;\gamma)=\sum\limits_{x\in{G}_\gamma^\ast}\exp\left(2\pi{i}\Re\left(\frac{\alpha{x...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2026
Автори: Varbanets, Pavel, Varbanets, Sergey, Vorobyov, Yakov
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2026
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2436
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543034122960896
author Varbanets, Pavel
Varbanets, Sergey
Vorobyov, Yakov
author_facet Varbanets, Pavel
Varbanets, Sergey
Vorobyov, Yakov
author_sort Varbanets, Pavel
baseUrl_str
collection OJS
datestamp_date 2026-01-11T10:11:21Z
description We study the mean values of the divisor function \(\tau(\omega)\) over the ring of Gaussian integers \(G\) when weighted by Kloosterman sums. For \(\alpha,\beta,\gamma\in{G}\) with \(\gamma\neq0\), let \(K(\alpha,\beta;\gamma)=\sum\limits_{x\in{G}_\gamma^\ast}\exp\left(2\pi{i}\Re\left(\frac{\alpha{x}+\beta{x^{-1}}}{\gamma}\right)\right).\) We obtain an asymptotic formula for \(\sum\limits_{N(\omega)\leq{X}}\tau(\omega)\cdot{K}(1,\alpha\omega;\gamma),\) uniformly in \(\alpha\) co-prime to \(\gamma\) and with explicit dependence on \(N(\gamma)\). Our approach combines a Selberg–Kuznetsov–type identity over \(G\) with bounds for \(K(\alpha,\beta;\gamma)\) in prime-power modulus, together with Dirichlet–series methods for twisted sums \(Z_m(s;\delta_1,\delta_2)=\sum\limits_{\omega\in{G}}\frac{e^{4mi\arg(\omega+\delta_1)}\cdot{e}^{2\pi{i}\cdot\Re(\delta_2\omega)}}{N(\omega+\delta_1)^s}.\) We prove a truncated functional equation for \(Z_m\), establish mean-square bounds on the critical line, and deduce the required cancellation in the Kloosterman–weighted average of \(\tau(\omega)\). As by-products we record a generalized Selberg–Kuznetsov identity in \(G\) and Weil–type bounds for \(K(\alpha,\beta;\mathfrak{p}^m)\). These results extend classical techniques for \(\mathbb{Z}\) to the Gaussian setting and may be of independent interest for additive problems in \(G\) involving divisor-type functions and exponential sums.
first_indexed 2026-02-08T07:56:48Z
format Article
id admjournalluguniveduua-article-2436
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:56:48Z
publishDate 2026
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-24362026-01-11T10:11:21Z Divisor function of the Gaussian integers weighted by the Kloosterman sum Varbanets, Pavel Varbanets, Sergey Vorobyov, Yakov exponential sums, Kloosterman sums, asymptotic formulas, divisor function 11L05, 11L07 We study the mean values of the divisor function \(\tau(\omega)\) over the ring of Gaussian integers \(G\) when weighted by Kloosterman sums. For \(\alpha,\beta,\gamma\in{G}\) with \(\gamma\neq0\), let \(K(\alpha,\beta;\gamma)=\sum\limits_{x\in{G}_\gamma^\ast}\exp\left(2\pi{i}\Re\left(\frac{\alpha{x}+\beta{x^{-1}}}{\gamma}\right)\right).\) We obtain an asymptotic formula for \(\sum\limits_{N(\omega)\leq{X}}\tau(\omega)\cdot{K}(1,\alpha\omega;\gamma),\) uniformly in \(\alpha\) co-prime to \(\gamma\) and with explicit dependence on \(N(\gamma)\). Our approach combines a Selberg–Kuznetsov–type identity over \(G\) with bounds for \(K(\alpha,\beta;\gamma)\) in prime-power modulus, together with Dirichlet–series methods for twisted sums \(Z_m(s;\delta_1,\delta_2)=\sum\limits_{\omega\in{G}}\frac{e^{4mi\arg(\omega+\delta_1)}\cdot{e}^{2\pi{i}\cdot\Re(\delta_2\omega)}}{N(\omega+\delta_1)^s}.\) We prove a truncated functional equation for \(Z_m\), establish mean-square bounds on the critical line, and deduce the required cancellation in the Kloosterman–weighted average of \(\tau(\omega)\). As by-products we record a generalized Selberg–Kuznetsov identity in \(G\) and Weil–type bounds for \(K(\alpha,\beta;\mathfrak{p}^m)\). These results extend classical techniques for \(\mathbb{Z}\) to the Gaussian setting and may be of independent interest for additive problems in \(G\) involving divisor-type functions and exponential sums. Lugansk National Taras Shevchenko University 2026-01-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2436 10.12958/adm2436 Algebra and Discrete Mathematics; Vol 40, No 2 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2436/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2436/1342 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2436/1365 Copyright (c) 2026 Algebra and Discrete Mathematics
spellingShingle exponential sums
Kloosterman sums
asymptotic formulas
divisor function
11L05
11L07
Varbanets, Pavel
Varbanets, Sergey
Vorobyov, Yakov
Divisor function of the Gaussian integers weighted by the Kloosterman sum
title Divisor function of the Gaussian integers weighted by the Kloosterman sum
title_full Divisor function of the Gaussian integers weighted by the Kloosterman sum
title_fullStr Divisor function of the Gaussian integers weighted by the Kloosterman sum
title_full_unstemmed Divisor function of the Gaussian integers weighted by the Kloosterman sum
title_short Divisor function of the Gaussian integers weighted by the Kloosterman sum
title_sort divisor function of the gaussian integers weighted by the kloosterman sum
topic exponential sums
Kloosterman sums
asymptotic formulas
divisor function
11L05
11L07
topic_facet exponential sums
Kloosterman sums
asymptotic formulas
divisor function
11L05
11L07
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2436
work_keys_str_mv AT varbanetspavel divisorfunctionofthegaussianintegersweightedbythekloostermansum
AT varbanetssergey divisorfunctionofthegaussianintegersweightedbythekloostermansum
AT vorobyovyakov divisorfunctionofthegaussianintegersweightedbythekloostermansum