Divisor function of the Gaussian integers weighted by the Kloosterman sum
We study the mean values of the divisor function \(\tau(\omega)\) over the ring of Gaussian integers \(G\) when weighted by Kloosterman sums. For \(\alpha,\beta,\gamma\in{G}\) with \(\gamma\neq0\), let \(K(\alpha,\beta;\gamma)=\sum\limits_{x\in{G}_\gamma^\ast}\exp\left(2\pi{i}\Re\left(\frac{\alpha{x...
Saved in:
| Date: | 2026 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2026
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2436 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |