Modules with minimax Cousin cohomologies

‎Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Vahidi, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/528
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:‎Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every integer \(n\) less than \(X\), the height of \(\mathfrak{p}\):(i) the \(n\)th Bass number of \(X\) with respect to \(\mathfrak{p}\) is finite;(ii) the \(n\)th local cohomology module of \(X_\mathfrak{p}\) with respect to \(\mathfrak{p}R_\mathfrak{p}\) is Artinian.