Projectivity and flatness over the graded ring of semi-coinvariants

Let \(k\) be a field, \(C\) a bialgebra with bijective antipode, \(A\) a right \(C\)-comodule algebra, \(G\) any subgroup of the monoid of grouplike elements of \(C\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of \(A\). Wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Guedenon, T.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/640
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(k\) be a field, \(C\) a bialgebra with bijective antipode, \(A\) a right \(C\)-comodule algebra, \(G\) any subgroup of the monoid of grouplike elements of \(C\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of \(A\). When \(A\) and \(C\) are commutative and \(G\) is any subgroup of the monoid of grouplike elements of the coring \(A \otimes C\), we prove similar results for the graded ring of conormalizing elements of \(A\).