Projectivity and flatness over the graded ring of semi-coinvariants
Let \(k\) be a field, \(C\) a bialgebra with bijective antipode, \(A\) a right \(C\)-comodule algebra, \(G\) any subgroup of the monoid of grouplike elements of \(C\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of \(A\). Wh...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/640 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | Let \(k\) be a field, \(C\) a bialgebra with bijective antipode, \(A\) a right \(C\)-comodule algebra, \(G\) any subgroup of the monoid of grouplike elements of \(C\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of \(A\). When \(A\) and \(C\) are commutative and \(G\) is any subgroup of the monoid of grouplike elements of the coring \(A \otimes C\), we prove similar results for the graded ring of conormalizing elements of \(A\). |
|---|