Projectivity and flatness over the graded ring of semi-coinvariants

Let \(k\) be a field, \(C\) a bialgebra with bijective antipode, \(A\) a right \(C\)-comodule algebra, \(G\) any subgroup of the monoid of grouplike elements of \(C\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of \(A\). Wh...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Guedenon, T.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/640
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(k\) be a field, \(C\) a bialgebra with bijective antipode, \(A\) a right \(C\)-comodule algebra, \(G\) any subgroup of the monoid of grouplike elements of \(C\). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of semi-coinvariants of \(A\). When \(A\) and \(C\) are commutative and \(G\) is any subgroup of the monoid of grouplike elements of the coring \(A \otimes C\), we prove similar results for the graded ring of conormalizing elements of \(A\).