On Pseudo-valuation rings and their extensions

Let \(R\) be a commutative Noetherian \(\mathbb{Q}\)-algebra (\(\mathbb{Q}\)is the field of rational numbers). Let \(\sigma\) be an automorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\). We define a \(\delta\)-divided ring and prove the following:  \((1)\)If \(R\) is a pseudo-valuati...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Bhat, V. K.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/678
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(R\) be a commutative Noetherian \(\mathbb{Q}\)-algebra (\(\mathbb{Q}\)is the field of rational numbers). Let \(\sigma\) be an automorphism of \(R\) and \(\delta\) a \(\sigma\)-derivation of \(R\). We define a \(\delta\)-divided ring and prove the following:  \((1)\)If \(R\) is a pseudo-valuation ring such that \(x\notin P\) for any prime ideal \(P\) of \(R[x;\sigma,\delta]\), and \(P\cap R\) is a prime ideal of \(R\) with \(\sigma(P\cap R) = P\cap R\) and \(\delta(P\cap R) \subseteq P\cap R\), then \(R[x;\sigma,\delta]\) is also a pseudo-valuation ring. \((2)\)If \(R\) is a \(\delta\)-divided ring such that \(x\notin P\) for any prime ideal \(P\) of \(R[x;\sigma,\delta]\), and \(P\cap R\) is a prime ideal of \(R\) with \(\sigma(P\cap R) = P\cap R\) and \(\delta(P\cap R) \subseteq P\cap R\), then \(R[x;\sigma,\delta]\) is also a \(\delta\)-divided ring.