A decomposition theorem for semiprime rings
A ring \(A\) is called an \(FDI\)-ring if there exists a decomposition of the identity of \(A\) in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent \(e\) artinian if the ring \(eAe\) is Artinian. We prove that every semiprime \(FDI\)-ring is a direc...
Saved in:
| Date: | 2018 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-916 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-9162018-03-21T07:18:38Z A decomposition theorem for semiprime rings Khibina, Marina minor of a ring, local idempotent, semiprime ring, Peirce decomposition 16P40, 16G10 A ring \(A\) is called an \(FDI\)-ring if there exists a decomposition of the identity of \(A\) in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent \(e\) artinian if the ring \(eAe\) is Artinian. We prove that every semiprime \(FDI\)-ring is a direct product of a semisimple Artinian ring and a semiprime \(FDI\)-ring whose identity decomposition doesn't contain artinian idempotents. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916/445 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T07:18:38Z |
| collection |
OJS |
| language |
English |
| topic |
minor of a ring local idempotent semiprime ring Peirce decomposition 16P40 16G10 |
| spellingShingle |
minor of a ring local idempotent semiprime ring Peirce decomposition 16P40 16G10 Khibina, Marina A decomposition theorem for semiprime rings |
| topic_facet |
minor of a ring local idempotent semiprime ring Peirce decomposition 16P40 16G10 |
| format |
Article |
| author |
Khibina, Marina |
| author_facet |
Khibina, Marina |
| author_sort |
Khibina, Marina |
| title |
A decomposition theorem for semiprime rings |
| title_short |
A decomposition theorem for semiprime rings |
| title_full |
A decomposition theorem for semiprime rings |
| title_fullStr |
A decomposition theorem for semiprime rings |
| title_full_unstemmed |
A decomposition theorem for semiprime rings |
| title_sort |
decomposition theorem for semiprime rings |
| description |
A ring \(A\) is called an \(FDI\)-ring if there exists a decomposition of the identity of \(A\) in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent \(e\) artinian if the ring \(eAe\) is Artinian. We prove that every semiprime \(FDI\)-ring is a direct product of a semisimple Artinian ring and a semiprime \(FDI\)-ring whose identity decomposition doesn't contain artinian idempotents. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916 |
| work_keys_str_mv |
AT khibinamarina adecompositiontheoremforsemiprimerings AT khibinamarina decompositiontheoremforsemiprimerings |
| first_indexed |
2025-12-02T15:41:25Z |
| last_indexed |
2025-12-02T15:41:25Z |
| _version_ |
1850412194196357120 |