A decomposition theorem for semiprime rings

A ring \(A\) is called an \(FDI\)-ring if there exists a decomposition of the identity of \(A\) in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent \(e\) artinian if the ring \(eAe\) is Artinian. We prove that every semiprime \(FDI\)-ring is a direc...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Khibina, Marina
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543044455628800
author Khibina, Marina
author_facet Khibina, Marina
author_sort Khibina, Marina
baseUrl_str
collection OJS
datestamp_date 2018-03-21T07:18:38Z
description A ring \(A\) is called an \(FDI\)-ring if there exists a decomposition of the identity of \(A\) in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent \(e\) artinian if the ring \(eAe\) is Artinian. We prove that every semiprime \(FDI\)-ring is a direct product of a semisimple Artinian ring and a semiprime \(FDI\)-ring whose identity decomposition doesn't contain artinian idempotents.
first_indexed 2025-12-02T15:41:25Z
format Article
id admjournalluguniveduua-article-916
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:41:25Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-9162018-03-21T07:18:38Z A decomposition theorem for semiprime rings Khibina, Marina minor of a ring, local idempotent, semiprime ring, Peirce decomposition 16P40, 16G10 A ring \(A\) is called an \(FDI\)-ring if there exists a decomposition of the identity of \(A\) in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent \(e\) artinian if the ring \(eAe\) is Artinian. We prove that every semiprime \(FDI\)-ring is a direct product of a semisimple Artinian ring and a semiprime \(FDI\)-ring whose identity decomposition doesn't contain artinian idempotents. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916 Algebra and Discrete Mathematics; Vol 4, No 1 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916/445 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle minor of a ring
local idempotent
semiprime ring
Peirce decomposition
16P40
16G10
Khibina, Marina
A decomposition theorem for semiprime rings
title A decomposition theorem for semiprime rings
title_full A decomposition theorem for semiprime rings
title_fullStr A decomposition theorem for semiprime rings
title_full_unstemmed A decomposition theorem for semiprime rings
title_short A decomposition theorem for semiprime rings
title_sort decomposition theorem for semiprime rings
topic minor of a ring
local idempotent
semiprime ring
Peirce decomposition
16P40
16G10
topic_facet minor of a ring
local idempotent
semiprime ring
Peirce decomposition
16P40
16G10
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/916
work_keys_str_mv AT khibinamarina adecompositiontheoremforsemiprimerings
AT khibinamarina decompositiontheoremforsemiprimerings