Flows in graphs and the homology of free categories

We study the \(R\)-module of generalized flows in a graph with coefficients in the \(R\)-representation of the graph over a ring \(R\) with 1 and show that this \(R\)-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff’s laws and build an exact sequence for calc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Husainov, Ahmet A., Calısıcı, Hamza
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/957
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:We study the \(R\)-module of generalized flows in a graph with coefficients in the \(R\)-representation of the graph over a ring \(R\) with 1 and show that this \(R\)-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff’s laws and build an exact sequence for calculating the R-module of flows in the union of graphs.