Double layer back propagation neural network based on restricted Boltzmann machines for forecasting daily particulate matter 2.5
Particulate matter 2.5 (PM2.5) pollution is an actual problem in the modern world and forecasting of the daily concentration of PM25 is a challenging task for researchers. In this study, a novel neural network model that effectively forecasts daily PM2.5 in Hangzhou city was developed in the form o...
Gespeichert in:
| Datum: | 2017 |
|---|---|
| Hauptverfasser: | Fu, Minglei, Wang, Chen, Le, Zichun, Manko, Dmytro |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут проблем реєстрації інформації НАН України
2017
|
| Schlagworte: | |
| Online Zugang: | http://drsp.ipri.kiev.ua/article/view/126541 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Data Recording, Storage & Processing |
Institution
Data Recording, Storage & ProcessingÄhnliche Einträge
-
Double layer back propagation neural network based on restricted Boltzmann machines for forecasting daily particulate matter 2.5
von: Minglei Fu, et al.
Veröffentlicht: (2017) -
On the separability of the restriction functor
von: Theohari-Apostolidi, Th., et al.
Veröffentlicht: (2018) -
A prediction of the frequency of non-periodic signals based on convolutional neural networks
von: Subbotin, S. A., et al.
Veröffentlicht: (2018) -
Application of neural networks in OLAP-systems
von: Nabibayeva, G.Ch.
Veröffentlicht: (2024) -
Functionally oriented model of adaptive short-term forecasting of electrical load
von: Voloshko, A. V., et al.
Veröffentlicht: (2016)