Neural network based method of a user identification by keyboard handwriting

With the development of advanced technologies, the problem of information security is becoming increasingly relevant. Given the development of spyware and digital technology allow more effective attacks on computer systems, including corporate networks, confidentiality can only be achieved through t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Danyliuk, I. I., Karpinets, V. V., Pryimak, A. V., Yaremchuk, Y. E., Kostiuchenko, O. I.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2018
Теми:
Онлайн доступ:http://drsp.ipri.kiev.ua/article/view/142913
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Data Recording, Storage & Processing

Репозитарії

Data Recording, Storage & Processing
id drspiprikievua-article-142913
record_format ojs
institution Data Recording, Storage & Processing
collection OJS
language Ukrainian
topic information security
user authentication
neural network
keyboard handwriting
time functions
защита информации
идентификация пользователя
нейронная сеть
клавиатурный почерк
временные функции
захист інформації
ідентифікація користувача
нейронна мережа
клавіатурний почерк
часові функції
spellingShingle information security
user authentication
neural network
keyboard handwriting
time functions
защита информации
идентификация пользователя
нейронная сеть
клавиатурный почерк
временные функции
захист інформації
ідентифікація користувача
нейронна мережа
клавіатурний почерк
часові функції
Danyliuk, I. I.
Karpinets, V. V.
Pryimak, A. V.
Yaremchuk, Y. E.
Kostiuchenko, O. I.
Neural network based method of a user identification by keyboard handwriting
topic_facet information security
user authentication
neural network
keyboard handwriting
time functions
защита информации
идентификация пользователя
нейронная сеть
клавиатурный почерк
временные функции
захист інформації
ідентифікація користувача
нейронна мережа
клавіатурний почерк
часові функції
format Article
author Danyliuk, I. I.
Karpinets, V. V.
Pryimak, A. V.
Yaremchuk, Y. E.
Kostiuchenko, O. I.
author_facet Danyliuk, I. I.
Karpinets, V. V.
Pryimak, A. V.
Yaremchuk, Y. E.
Kostiuchenko, O. I.
author_sort Danyliuk, I. I.
title Neural network based method of a user identification by keyboard handwriting
title_short Neural network based method of a user identification by keyboard handwriting
title_full Neural network based method of a user identification by keyboard handwriting
title_fullStr Neural network based method of a user identification by keyboard handwriting
title_full_unstemmed Neural network based method of a user identification by keyboard handwriting
title_sort neural network based method of a user identification by keyboard handwriting
title_alt Метод идентификации пользователя по клавиатурному почерку на основе нейросети
Метод ідентифікації користувача за клавіатурним почерком на основі нейромереж
description With the development of advanced technologies, the problem of information security is becoming increasingly relevant. Given the development of spyware and digital technology allow more effective attacks on computer systems, including corporate networks, confidentiality can only be achieved through the creation of comprehensive information security. And one of the main elements of such a security system is the subsystem, which provides the identification of the user of the computer. Traditional identification and authentication methods based on the use of cards, electronic keys or other portable identifiers, as well as passwords and access codes, have significant disadvantages. The main disadvantage of such methods is the ambiguity of the identified person. Existing methods of user identification by keyboard handwriting are accurate from 78 % to 93,59 % and built on multilevel neural networks, which affects the speed of their learning and as a result of the cost of more resources, so it is actual to increase the accuracy of identification and reduce the time to train the neural network and design the appropriate method. An experimental study was made of the possibility of using a two-level neural network with a built-in sigmoid activation function to improve the accuracy of user identification by keyboard handwriting and proposed a method based on this mathematical apparatus. A comparison of the proposed identification method with existing ones was also performed, which showed an increase in the accuracy of user identification by 1–15 %. The method of Saket Maheshwari and Vikram Pudi has similar accuracy indicators, but there are several significant differences between the proposed and the existing method: in their work Saket Maheshwari and Wikam Pudi used a five-level neural network; it took 9 minutes to study their neural network. In the proposed method, the time of training the neural network is 6 minutes, which is faster for 3 minutes and, as a result, is much more effective when used, since the user's identification time is reduced and high identification accuracy is on the same high level.
publisher Інститут проблем реєстрації інформації НАН України
publishDate 2018
url http://drsp.ipri.kiev.ua/article/view/142913
work_keys_str_mv AT danyliukii neuralnetworkbasedmethodofauseridentificationbykeyboardhandwriting
AT karpinetsvv neuralnetworkbasedmethodofauseridentificationbykeyboardhandwriting
AT pryimakav neuralnetworkbasedmethodofauseridentificationbykeyboardhandwriting
AT yaremchukye neuralnetworkbasedmethodofauseridentificationbykeyboardhandwriting
AT kostiuchenkooi neuralnetworkbasedmethodofauseridentificationbykeyboardhandwriting
AT danyliukii metodidentifikaciipolʹzovatelâpoklaviaturnomupočerkunaosnovenejroseti
AT karpinetsvv metodidentifikaciipolʹzovatelâpoklaviaturnomupočerkunaosnovenejroseti
AT pryimakav metodidentifikaciipolʹzovatelâpoklaviaturnomupočerkunaosnovenejroseti
AT yaremchukye metodidentifikaciipolʹzovatelâpoklaviaturnomupočerkunaosnovenejroseti
AT kostiuchenkooi metodidentifikaciipolʹzovatelâpoklaviaturnomupočerkunaosnovenejroseti
AT danyliukii metodídentifíkacííkoristuvačazaklavíaturnimpočerkomnaosnovínejromerež
AT karpinetsvv metodídentifíkacííkoristuvačazaklavíaturnimpočerkomnaosnovínejromerež
AT pryimakav metodídentifíkacííkoristuvačazaklavíaturnimpočerkomnaosnovínejromerež
AT yaremchukye metodídentifíkacííkoristuvačazaklavíaturnimpočerkomnaosnovínejromerež
AT kostiuchenkooi metodídentifíkacííkoristuvačazaklavíaturnimpočerkomnaosnovínejromerež
first_indexed 2024-04-21T19:33:53Z
last_indexed 2024-04-21T19:33:53Z
_version_ 1796974087080247296
spelling drspiprikievua-article-1429132019-12-27T07:08:20Z Neural network based method of a user identification by keyboard handwriting Метод идентификации пользователя по клавиатурному почерку на основе нейросети Метод ідентифікації користувача за клавіатурним почерком на основі нейромереж Danyliuk, I. I. Karpinets, V. V. Pryimak, A. V. Yaremchuk, Y. E. Kostiuchenko, O. I. information security user authentication neural network keyboard handwriting time functions защита информации идентификация пользователя нейронная сеть клавиатурный почерк временные функции захист інформації ідентифікація користувача нейронна мережа клавіатурний почерк часові функції With the development of advanced technologies, the problem of information security is becoming increasingly relevant. Given the development of spyware and digital technology allow more effective attacks on computer systems, including corporate networks, confidentiality can only be achieved through the creation of comprehensive information security. And one of the main elements of such a security system is the subsystem, which provides the identification of the user of the computer. Traditional identification and authentication methods based on the use of cards, electronic keys or other portable identifiers, as well as passwords and access codes, have significant disadvantages. The main disadvantage of such methods is the ambiguity of the identified person. Existing methods of user identification by keyboard handwriting are accurate from 78 % to 93,59 % and built on multilevel neural networks, which affects the speed of their learning and as a result of the cost of more resources, so it is actual to increase the accuracy of identification and reduce the time to train the neural network and design the appropriate method. An experimental study was made of the possibility of using a two-level neural network with a built-in sigmoid activation function to improve the accuracy of user identification by keyboard handwriting and proposed a method based on this mathematical apparatus. A comparison of the proposed identification method with existing ones was also performed, which showed an increase in the accuracy of user identification by 1–15 %. The method of Saket Maheshwari and Vikram Pudi has similar accuracy indicators, but there are several significant differences between the proposed and the existing method: in their work Saket Maheshwari and Wikam Pudi used a five-level neural network; it took 9 minutes to study their neural network. In the proposed method, the time of training the neural network is 6 minutes, which is faster for 3 minutes and, as a result, is much more effective when used, since the user's identification time is reduced and high identification accuracy is on the same high level. Проведено экспериментальное исследование возможности использования двухуровневой нейросети с встроенной сигмоидной активационной функцией для улучшения точности идентификации пользователя по клавиатурному почерку и предложен метод на основе данного математического аппарата, а также проведено сравнение предложенного метода идентификации с существующими. Полученные результаты показали, что предложенный метод имеет лучшую точность идентификации на 1–15 %. Проведено експериментальне дослідження можливості використання дворівненої нейромережі з вбудованою сигмоїдною активаційною функцією для покращення точності ідентифікації користувача за клавіатурним почерком, а також проведено порівняння запропонованого методу ідентифікації з існуючими. Отримані результати показали, що запропонований метод має кращу точність ідентифікаціїна 1-15 %. Інститут проблем реєстрації інформації НАН України 2018-06-19 Article Article application/pdf http://drsp.ipri.kiev.ua/article/view/142913 10.35681/1560-9189.2018.20.2.142913 Data Recording, Storage & Processing; Vol. 20 No. 2 (2018); 68–76 Регистрация, хранение и обработка данных; Том 20 № 2 (2018); 68–76 Реєстрація, зберігання і обробка даних; Том 20 № 2 (2018); 68–76 1560-9189 uk http://drsp.ipri.kiev.ua/article/view/142913/140360 Авторське право (c) 2021 Реєстрація, зберігання і обробка даних