A prediction of the frequency of non-periodic signals based on convolutional neural networks

The problem on creation of mathematical support for construction of forecast models based on convolutional neural networks is solved in the work. A method is proposed for using convolutional neural networks to predict the frequency of non-periodic signals. To determine the frequency of the signal, i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Subbotin, S. A., Korniienko, O. V., Drokin, I. V.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2018
Теми:
Онлайн доступ:http://drsp.ipri.kiev.ua/article/view/158515
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Data Recording, Storage & Processing

Репозитарії

Data Recording, Storage & Processing
id drspiprikievua-article-158515
record_format ojs
spelling drspiprikievua-article-1585152019-12-27T01:23:42Z A prediction of the frequency of non-periodic signals based on convolutional neural networks Прогнозування частоти неперіодичних сигналів на основі згорткових нейронних мереж Subbotin, S. A. Korniienko, O. V. Drokin, I. V. forecasting signal training neural network convolution error gradient прогнозування сигнал навчання нейронна мережа згортка помилка градієнт The problem on creation of mathematical support for construction of forecast models based on convolutional neural networks is solved in the work. A method is proposed for using convolutional neural networks to predict the frequency of non-periodic signals. To determine the frequency of the signal, it was divided into parts, after which a fast Fourier transform was used for each part. The spectrograms obtained after the transform are used as inputs to the learning of the neural network. The output value depends on the presence or absence of a frequency that is above the critical value on the predicted interval. The first layer of the neural network uses a three-dimensional convolution, and on the next layers - a onedimensional convolution. Between the convolutional layers, there are subsampling layers used to accelerate learning and prevent retraining. The neural network contains two output neurons which determine the presence of a frequency that exceeds the critical value. The practical task of predicting the frequency of vibration of aircraft engines during their tests is solved. The construction of different neural network models, their training and testing on the data that were collected from vibration sensors during the testing of the aircraft engine has been performed. To increase the amount of data, augmentation is used. To do this, several copies of the signal with changed frequencies are added. The models constructed differ in the amount of data used and in the forecasting time. Comparison of the test results of all the models has been performed. The maximum forecasting time that can be achieved with the proposed method is determined. This time is enough for the pilot to react and change the flight mode or to land the helicopter. Вирішено завдання створення математичного забезпечення для побудови прогнозних моделей на основі згорткових нейронних мереж. Запропоновано метод використання згорткових нейронних мереж для прогнозування частоти неперіодичних сигналів. Вирішено практичне завдання прогнозування частоти вібрацій авіаційних двигунів при проведені їхніх випробувань. Виконано побудову нейромережевих моделей, їхнє навчання та тестування на даних, які було зібрано з датчиків вібрацій при проведені випробувань авіадвигуна. Порівняно результати тестування всіх побудованих моделей. Інститут проблем реєстрації інформації НАН України 2018-09-18 Article Article application/pdf http://drsp.ipri.kiev.ua/article/view/158515 10.35681/1560-9189.2018.20.3.158515 Data Recording, Storage & Processing; Vol. 20 No. 3 (2018); 29–36 Регистрация, хранение и обработка данных; Том 20 № 3 (2018); 29–36 Реєстрація, зберігання і обробка даних; Том 20 № 3 (2018); 29–36 1560-9189 uk http://drsp.ipri.kiev.ua/article/view/158515/157870 Авторське право (c) 2021 Реєстрація, зберігання і обробка даних
institution Data Recording, Storage & Processing
baseUrl_str
datestamp_date 2019-12-27T01:23:42Z
collection OJS
language Ukrainian
topic forecasting
signal
training
neural network
convolution
error
gradient
spellingShingle forecasting
signal
training
neural network
convolution
error
gradient
Subbotin, S. A.
Korniienko, O. V.
Drokin, I. V.
A prediction of the frequency of non-periodic signals based on convolutional neural networks
topic_facet forecasting
signal
training
neural network
convolution
error
gradient
прогнозування
сигнал
навчання
нейронна мережа
згортка
помилка
градієнт
format Article
author Subbotin, S. A.
Korniienko, O. V.
Drokin, I. V.
author_facet Subbotin, S. A.
Korniienko, O. V.
Drokin, I. V.
author_sort Subbotin, S. A.
title A prediction of the frequency of non-periodic signals based on convolutional neural networks
title_short A prediction of the frequency of non-periodic signals based on convolutional neural networks
title_full A prediction of the frequency of non-periodic signals based on convolutional neural networks
title_fullStr A prediction of the frequency of non-periodic signals based on convolutional neural networks
title_full_unstemmed A prediction of the frequency of non-periodic signals based on convolutional neural networks
title_sort prediction of the frequency of non-periodic signals based on convolutional neural networks
title_alt Прогнозування частоти неперіодичних сигналів на основі згорткових нейронних мереж
description The problem on creation of mathematical support for construction of forecast models based on convolutional neural networks is solved in the work. A method is proposed for using convolutional neural networks to predict the frequency of non-periodic signals. To determine the frequency of the signal, it was divided into parts, after which a fast Fourier transform was used for each part. The spectrograms obtained after the transform are used as inputs to the learning of the neural network. The output value depends on the presence or absence of a frequency that is above the critical value on the predicted interval. The first layer of the neural network uses a three-dimensional convolution, and on the next layers - a onedimensional convolution. Between the convolutional layers, there are subsampling layers used to accelerate learning and prevent retraining. The neural network contains two output neurons which determine the presence of a frequency that exceeds the critical value. The practical task of predicting the frequency of vibration of aircraft engines during their tests is solved. The construction of different neural network models, their training and testing on the data that were collected from vibration sensors during the testing of the aircraft engine has been performed. To increase the amount of data, augmentation is used. To do this, several copies of the signal with changed frequencies are added. The models constructed differ in the amount of data used and in the forecasting time. Comparison of the test results of all the models has been performed. The maximum forecasting time that can be achieved with the proposed method is determined. This time is enough for the pilot to react and change the flight mode or to land the helicopter.
publisher Інститут проблем реєстрації інформації НАН України
publishDate 2018
url http://drsp.ipri.kiev.ua/article/view/158515
work_keys_str_mv AT subbotinsa apredictionofthefrequencyofnonperiodicsignalsbasedonconvolutionalneuralnetworks
AT korniienkoov apredictionofthefrequencyofnonperiodicsignalsbasedonconvolutionalneuralnetworks
AT drokiniv apredictionofthefrequencyofnonperiodicsignalsbasedonconvolutionalneuralnetworks
AT subbotinsa prognozuvannâčastotineperíodičnihsignalívnaosnovízgortkovihnejronnihmerež
AT korniienkoov prognozuvannâčastotineperíodičnihsignalívnaosnovízgortkovihnejronnihmerež
AT drokiniv prognozuvannâčastotineperíodičnihsignalívnaosnovízgortkovihnejronnihmerež
AT subbotinsa predictionofthefrequencyofnonperiodicsignalsbasedonconvolutionalneuralnetworks
AT korniienkoov predictionofthefrequencyofnonperiodicsignalsbasedonconvolutionalneuralnetworks
AT drokiniv predictionofthefrequencyofnonperiodicsignalsbasedonconvolutionalneuralnetworks
first_indexed 2025-07-17T10:57:19Z
last_indexed 2025-07-17T10:57:19Z
_version_ 1850411303336673280