Neural network modeling of critical tempe-ratures for steel pitting.

The task of creating mathematical software for constructing quantitative dependency models based on forward propagation neural networks has been solved in the work. A modification of method for dropping out neurons is proposed, which better prevents the model from overfitting. The modified method ta...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Korniienko, O. V., Subbotin, S. O., Naryvskyi, O. E.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2019
Теми:
Онлайн доступ:http://drsp.ipri.kiev.ua/article/view/179699
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Data Recording, Storage & Processing

Репозитарії

Data Recording, Storage & Processing
id drspiprikievua-article-179699
record_format ojs
spelling drspiprikievua-article-1796992019-12-10T11:00:44Z Neural network modeling of critical tempe-ratures for steel pitting. Нейромережеве моделювання критичних температур піттінгоутворення сталі Korniienko, O. V. Subbotin, S. O. Naryvskyi, O. E. вибірка навчання нейронна мережа помилка градієнт виключення ймовірність сталь AiSi 321 dataset training neural network error gradient dropout probability AiSi 321 steel The task of creating mathematical software for constructing quantitative dependency models based on forward propagation neural networks has been solved in the work. A modification of method for dropping out neurons is proposed, which better prevents the model from overfitting. The modified method takes into account the effect of each neuron on the model error. It is proposed to increase the probability of dropping out of neurons that more affect the model error and to decrease the probability of dropping out of neurons that less affect the model error. New probabilities of dropping out of neurons depend not on the degree of influence on the error, but on the number of neurons on the same layer that affect the error more or less. The probability of dropping out of a neuron with the smallest influence on the error decreases by 50 % and for a neuron with the largest influence on the error increases by 50 % of the base probability. To calculate the dropping out probabilities of all neurons, it is proposed to use a sigmoid function with a nonlinearity coefficient. The mean probability of dropping out of neurons remains unchanged, so that modifications in the method relate only to the learning process. Despite the fact that the training of the neural networks by the proposed method takes more time, the quality of the trained models increases. The practical problem of determining the critical pitting temperatures of AiSi 321 steel by its characteristics has been solved. The construction of neural network models, their training and testing on the data on the characteristics of steel has been performed. The constructed models differ in the number of neurons on the hidden layer and the base probability of dropping out of neurons. Each model was trained by three methods: without dropping out of neurons, with the usual method of dropping out and with a modified method of dropping out. The test results of all constructed models have been compared. The average error on the test data when using the modified method of dropping out is about 9 % less than when using the usual method. Вирішено завдання створення математичного забезпечення для побудови моделей кількісних залежностей на основі нейронних мереж прямого поширення. Запропоновано метод виключення нейронів, що враховує вплив кожного нейрона на помилку моделі. Вирішено практичне завдання визначення критичних температур піттінгоутворення сталі AiSi 321 за її характеристиками. Виконано побудову нейромережевих моделей, їхнє навчання та тестування на даних за характеристиками сталі. Порівняно результати тестування всіх побудованих моделей. Інститут проблем реєстрації інформації НАН України 2019-11-05 Article Article application/pdf http://drsp.ipri.kiev.ua/article/view/179699 10.35681/1560-9189.2019.1.1.179699 Data Recording, Storage & Processing; Vol. 21 No. 1 (2019); 57-67 Регистрация, хранение и обработка данных; Том 21 № 1 (2019); 57-67 Реєстрація, зберігання і обробка даних; Том 21 № 1 (2019); 57-67 1560-9189 uk http://drsp.ipri.kiev.ua/article/view/179699/182642 Авторське право (c) 2021 Реєстрація, зберігання і обробка даних
institution Data Recording, Storage & Processing
collection OJS
language Ukrainian
topic вибірка
навчання
нейронна мережа
помилка
градієнт
виключення
ймовірність
сталь AiSi 321
dataset
training
neural network
error
gradient
dropout
probability
AiSi 321 steel
spellingShingle вибірка
навчання
нейронна мережа
помилка
градієнт
виключення
ймовірність
сталь AiSi 321
dataset
training
neural network
error
gradient
dropout
probability
AiSi 321 steel
Korniienko, O. V.
Subbotin, S. O.
Naryvskyi, O. E.
Neural network modeling of critical tempe-ratures for steel pitting.
topic_facet вибірка
навчання
нейронна мережа
помилка
градієнт
виключення
ймовірність
сталь AiSi 321
dataset
training
neural network
error
gradient
dropout
probability
AiSi 321 steel
format Article
author Korniienko, O. V.
Subbotin, S. O.
Naryvskyi, O. E.
author_facet Korniienko, O. V.
Subbotin, S. O.
Naryvskyi, O. E.
author_sort Korniienko, O. V.
title Neural network modeling of critical tempe-ratures for steel pitting.
title_short Neural network modeling of critical tempe-ratures for steel pitting.
title_full Neural network modeling of critical tempe-ratures for steel pitting.
title_fullStr Neural network modeling of critical tempe-ratures for steel pitting.
title_full_unstemmed Neural network modeling of critical tempe-ratures for steel pitting.
title_sort neural network modeling of critical tempe-ratures for steel pitting.
title_alt Нейромережеве моделювання критичних температур піттінгоутворення сталі
description The task of creating mathematical software for constructing quantitative dependency models based on forward propagation neural networks has been solved in the work. A modification of method for dropping out neurons is proposed, which better prevents the model from overfitting. The modified method takes into account the effect of each neuron on the model error. It is proposed to increase the probability of dropping out of neurons that more affect the model error and to decrease the probability of dropping out of neurons that less affect the model error. New probabilities of dropping out of neurons depend not on the degree of influence on the error, but on the number of neurons on the same layer that affect the error more or less. The probability of dropping out of a neuron with the smallest influence on the error decreases by 50 % and for a neuron with the largest influence on the error increases by 50 % of the base probability. To calculate the dropping out probabilities of all neurons, it is proposed to use a sigmoid function with a nonlinearity coefficient. The mean probability of dropping out of neurons remains unchanged, so that modifications in the method relate only to the learning process. Despite the fact that the training of the neural networks by the proposed method takes more time, the quality of the trained models increases. The practical problem of determining the critical pitting temperatures of AiSi 321 steel by its characteristics has been solved. The construction of neural network models, their training and testing on the data on the characteristics of steel has been performed. The constructed models differ in the number of neurons on the hidden layer and the base probability of dropping out of neurons. Each model was trained by three methods: without dropping out of neurons, with the usual method of dropping out and with a modified method of dropping out. The test results of all constructed models have been compared. The average error on the test data when using the modified method of dropping out is about 9 % less than when using the usual method.
publisher Інститут проблем реєстрації інформації НАН України
publishDate 2019
url http://drsp.ipri.kiev.ua/article/view/179699
work_keys_str_mv AT korniienkoov neuralnetworkmodelingofcriticaltemperaturesforsteelpitting
AT subbotinso neuralnetworkmodelingofcriticaltemperaturesforsteelpitting
AT naryvskyioe neuralnetworkmodelingofcriticaltemperaturesforsteelpitting
AT korniienkoov nejromereževemodelûvannâkritičnihtemperaturpíttíngoutvorennâstalí
AT subbotinso nejromereževemodelûvannâkritičnihtemperaturpíttíngoutvorennâstalí
AT naryvskyioe nejromereževemodelûvannâkritičnihtemperaturpíttíngoutvorennâstalí
first_indexed 2024-04-21T19:34:04Z
last_indexed 2024-04-21T19:34:04Z
_version_ 1796974097953980416