A network model for structural survivability

Survivability is a fundamental property of the system, its ability to adapt to new unpredictable conditions of functioning, resistance to undesirable influences during the implementation of the main function. There are many aspects of the survivability of systems, including structural, functional, i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Додонов, О. Г., Ланде, Д. В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2021
Теми:
Онлайн доступ:http://drsp.ipri.kiev.ua/article/view/235075
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Data Recording, Storage & Processing

Репозитарії

Data Recording, Storage & Processing
id drspiprikievua-article-235075
record_format ojs
spelling drspiprikievua-article-2350752021-07-06T15:57:45Z A network model for structural survivability Мережева модель структурної живучості Додонов, О. Г. Ланде, Д. В. моделювання живучості, структурна живучість, канонічна живучість, мережева модель, компонента зв’язності, індекс живучості survivability modeling, structural survivability, canonical survivability, network model, connectivity component, survivability index Survivability is a fundamental property of the system, its ability to adapt to new unpredictable conditions of functioning, resistance to undesirable influences during the implementation of the main function. There are many aspects of the survivability of systems, including structural, functional, informational survivability. This work is devoted to modeling the structural survivability of systems. In this case, systems are modeled as network structures. In many cases, vitality is described as a qualitative property that does not lend itself to precise quantitative description. One of the tasks of this work is to give a clear quantitative assessment of survivability and more perfect than the so-called canonical survivability. Structural survivability is considered as the property of a system to maintain its functionality while passively resisting damage to individual elements. In a particular case, when a given process of destruction of elements, structural survivability is considered as structural reliability. The structural reliability criterion is the number of element failures that does not impair the performance of the systems. An approach to assessing the survivability of the system is proposed. This estimate corresponds to the value of the largest connected component of the model's network after a destructive impact on it. This estimate is more complex than the structural survivability index used so far, which only considers network connectivity. The work studies networks with different topology, in which individual links are randomly deleted. The indicator (the threshold probability of removing individual edges) introduced in the work depends on the network topology and its size, which is approximated with high accuracy by cubic polynomials. This indicator is more complex than the canonical structural survivability indicator, which takes into account only the network connectivity violation. Obviously, the introduced indicator depends on the network topology and its size, at the same time it is well approximated even by cubic polynomials. The development of the proposed model is possible by taking into account the inequality of the nodes of the network model and / or changing the «power» function of the network structure. Also, the considered model can be expanded in the direction of accounting for networks in which links are not completely deleted, but «regenerated» or new links can be established. Tabl.: 1. Fig.: 3. Refs: 11 titles. Описано мережеві моделі систем і досліджено їхню структурну живучість. Запропоновано підхід до оцінки живучості системи. Ця оцінка відповідає величині найбільшої зв’язної компоненти мережі моделі після деструктивного впливу на неї. Вона більш складна, ніж індекс структурної живучості, що застосовується до теперішнього часу, в якому враховується тільки зв’язність мережі. В роботі вивчаються мережі з різною топологією, в яких випадковим чином видаляються окремі ланки. Введений у роботі показник залежить від топології мережі і її розмірів, який з високою точністю апроксимується кубічними многочленами. Інститут проблем реєстрації інформації НАН України 2021-07-06 Article Article application/pdf http://drsp.ipri.kiev.ua/article/view/235075 10.35681/1560-9189.2021.23.1.235075 Data Recording, Storage & Processing; Vol. 23 No. 1 (2021); 15-22 Регистрация, хранение и обработка данных; Том 23 № 1 (2021); 15-22 Реєстрація, зберігання і обробка даних; Том 23 № 1 (2021); 15-22 1560-9189 uk http://drsp.ipri.kiev.ua/article/view/235075/234844 Авторське право (c) 2021 Реєстрація, зберігання і обробка даних
institution Data Recording, Storage & Processing
collection OJS
language Ukrainian
topic моделювання живучості
структурна живучість
канонічна живучість
мережева модель
компонента зв’язності
індекс живучості
survivability modeling
structural survivability
canonical survivability
network model
connectivity component
survivability index
spellingShingle моделювання живучості
структурна живучість
канонічна живучість
мережева модель
компонента зв’язності
індекс живучості
survivability modeling
structural survivability
canonical survivability
network model
connectivity component
survivability index
Додонов, О. Г.
Ланде, Д. В.
A network model for structural survivability
topic_facet моделювання живучості
структурна живучість
канонічна живучість
мережева модель
компонента зв’язності
індекс живучості
survivability modeling
structural survivability
canonical survivability
network model
connectivity component
survivability index
format Article
author Додонов, О. Г.
Ланде, Д. В.
author_facet Додонов, О. Г.
Ланде, Д. В.
author_sort Додонов, О. Г.
title A network model for structural survivability
title_short A network model for structural survivability
title_full A network model for structural survivability
title_fullStr A network model for structural survivability
title_full_unstemmed A network model for structural survivability
title_sort network model for structural survivability
title_alt Мережева модель структурної живучості
description Survivability is a fundamental property of the system, its ability to adapt to new unpredictable conditions of functioning, resistance to undesirable influences during the implementation of the main function. There are many aspects of the survivability of systems, including structural, functional, informational survivability. This work is devoted to modeling the structural survivability of systems. In this case, systems are modeled as network structures. In many cases, vitality is described as a qualitative property that does not lend itself to precise quantitative description. One of the tasks of this work is to give a clear quantitative assessment of survivability and more perfect than the so-called canonical survivability. Structural survivability is considered as the property of a system to maintain its functionality while passively resisting damage to individual elements. In a particular case, when a given process of destruction of elements, structural survivability is considered as structural reliability. The structural reliability criterion is the number of element failures that does not impair the performance of the systems. An approach to assessing the survivability of the system is proposed. This estimate corresponds to the value of the largest connected component of the model's network after a destructive impact on it. This estimate is more complex than the structural survivability index used so far, which only considers network connectivity. The work studies networks with different topology, in which individual links are randomly deleted. The indicator (the threshold probability of removing individual edges) introduced in the work depends on the network topology and its size, which is approximated with high accuracy by cubic polynomials. This indicator is more complex than the canonical structural survivability indicator, which takes into account only the network connectivity violation. Obviously, the introduced indicator depends on the network topology and its size, at the same time it is well approximated even by cubic polynomials. The development of the proposed model is possible by taking into account the inequality of the nodes of the network model and / or changing the «power» function of the network structure. Also, the considered model can be expanded in the direction of accounting for networks in which links are not completely deleted, but «regenerated» or new links can be established. Tabl.: 1. Fig.: 3. Refs: 11 titles.
publisher Інститут проблем реєстрації інформації НАН України
publishDate 2021
url http://drsp.ipri.kiev.ua/article/view/235075
work_keys_str_mv AT dodonovog anetworkmodelforstructuralsurvivability
AT landedv anetworkmodelforstructuralsurvivability
AT dodonovog mereževamodelʹstrukturnoíživučostí
AT landedv mereževamodelʹstrukturnoíživučostí
AT dodonovog networkmodelforstructuralsurvivability
AT landedv networkmodelforstructuralsurvivability
first_indexed 2024-04-21T19:34:20Z
last_indexed 2024-04-21T19:34:20Z
_version_ 1796974114764750848