Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations

By one of the creators of hyper-complex numbers V. Hamilton was the first proposed a constructive definition of nonlinear transcendental functions from hypercomplex variables. In particular, the researcher proposed to define the exponential function of a quaternion variable as the sum of a power ser...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Боярінова, Ю. Є., Каліновський, Я. О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2021
Теми:
Онлайн доступ:http://drsp.ipri.kiev.ua/article/view/239191
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Data Recording, Storage & Processing

Репозитарії

Data Recording, Storage & Processing
id drspiprikievua-article-239191
record_format ojs
institution Data Recording, Storage & Processing
collection OJS
language Ukrainian
topic гіперкомплексна числова система
представлення функцій
експонента
характеристичне число
системи комп’ютерної алгебри
алгебраїчна операція
таблиця Келі
hypercomplex number system (HNS)
function representation
exponent
characteristic number
computer algebra systems
algebraic operation
Cayley table
spellingShingle гіперкомплексна числова система
представлення функцій
експонента
характеристичне число
системи комп’ютерної алгебри
алгебраїчна операція
таблиця Келі
hypercomplex number system (HNS)
function representation
exponent
characteristic number
computer algebra systems
algebraic operation
Cayley table
Боярінова, Ю. Є.
Каліновський, Я. О.
Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations
topic_facet гіперкомплексна числова система
представлення функцій
експонента
характеристичне число
системи комп’ютерної алгебри
алгебраїчна операція
таблиця Келі
hypercomplex number system (HNS)
function representation
exponent
characteristic number
computer algebra systems
algebraic operation
Cayley table
format Article
author Боярінова, Ю. Є.
Каліновський, Я. О.
author_facet Боярінова, Ю. Є.
Каліновський, Я. О.
author_sort Боярінова, Ю. Є.
title Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations
title_short Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations
title_full Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations
title_fullStr Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations
title_full_unstemmed Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations
title_sort features of representations of exponential functions in hns of high dimensions by software of hypercomplex calculations
title_alt Особливості побудови представлень експоненціальних функцій у гіперкомплексних числових системах високих вимірностей засобами пакету гіперкомплексних обчислень
description By one of the creators of hyper-complex numbers V. Hamilton was the first proposed a constructive definition of nonlinear transcendental functions from hypercomplex variables. In particular, the researcher proposed to define the exponential function of a quaternion variable as the sum of a power series similar to the real case. Over time, this approach has been generalized to other transcendental functions of the hypercomplex variable: trigonometric sine and cosine, hyperbolic sine and cosine, and others, and is now generally accepted. After Hamilton, many works have been used to construct an image of an exponential function from a quaternion. For this purpose, various methods are used, which are based on the symmetric properties of quaternions. Images of other transcendental functions of the quaternion are also constructed: logarithmic function, trigonometric sine and cosine. These functions have found important use not only in scientific applications: physics, mechanics, but also in technical ones: orientation of a solid body in space, gyroscopy, robotics, etc. The problem of constructing images of nonlinear functions from a hypercomplex variable is reduced to their definition from the point of view of the structure of calculations over the hyper-complex argument and their representation in the form of a hyper-complex function. Knowledge of the methods of performing algebraic operations in hypercomplex number systems (HNS) allows us to construct form of them in the form of a hypercomplex function when determining linear or nonlinear functions. The construction of the form of transcendental functions from the hypercomplex argument is reduced to the image of power series of type in the form of hypercomplex functions. In some simple cases, this can be done directly. But in the general case requires the development of special methods. The aim of this work is to solve some algorithmic problems that arise when modeling representations of exponential functions in high-dimensional HNS. The structure of the algorithm for constructing the representation of an exponential function in hypercomplex number systems of high dimensionality by the method of an associated system of linear differential equations is considered in the paper. The necessary brief information about the software of hypercomplex calculations (SHCC) is given, by means of which the necessary cumbersome operations on symbolic expressions at construction of representation of an exponent in HNS of the fifth dimension are carried out. The work is accompanied by fragments of programs in the environment of SHCC and the results of symbolic calculations. Refs: 14 titles.
publisher Інститут проблем реєстрації інформації НАН України
publishDate 2021
url http://drsp.ipri.kiev.ua/article/view/239191
work_keys_str_mv AT boârínovaûê featuresofrepresentationsofexponentialfunctionsinhnsofhighdimensionsbysoftwareofhypercomplexcalculations
AT kalínovsʹkijâo featuresofrepresentationsofexponentialfunctionsinhnsofhighdimensionsbysoftwareofhypercomplexcalculations
AT boârínovaûê osoblivostípobudovipredstavlenʹeksponencíalʹnihfunkcíjugíperkompleksnihčislovihsistemahvisokihvimírnostejzasobamipaketugíperkompleksnihobčislenʹ
AT kalínovsʹkijâo osoblivostípobudovipredstavlenʹeksponencíalʹnihfunkcíjugíperkompleksnihčislovihsistemahvisokihvimírnostejzasobamipaketugíperkompleksnihobčislenʹ
first_indexed 2024-04-21T19:34:22Z
last_indexed 2024-04-21T19:34:22Z
_version_ 1796974116814716928
spelling drspiprikievua-article-2391912021-08-31T12:26:55Z Features of representations of exponential functions in HNS of high dimensions by software of hypercomplex calculations Особливості побудови представлень експоненціальних функцій у гіперкомплексних числових системах високих вимірностей засобами пакету гіперкомплексних обчислень Боярінова, Ю. Є. Каліновський, Я. О. гіперкомплексна числова система, представлення функцій, експонента, характеристичне число, системи комп’ютерної алгебри, алгебраїчна операція, таблиця Келі hypercomplex number system (HNS), function representation, exponent, characteristic number, computer algebra systems, algebraic operation, Cayley table By one of the creators of hyper-complex numbers V. Hamilton was the first proposed a constructive definition of nonlinear transcendental functions from hypercomplex variables. In particular, the researcher proposed to define the exponential function of a quaternion variable as the sum of a power series similar to the real case. Over time, this approach has been generalized to other transcendental functions of the hypercomplex variable: trigonometric sine and cosine, hyperbolic sine and cosine, and others, and is now generally accepted. After Hamilton, many works have been used to construct an image of an exponential function from a quaternion. For this purpose, various methods are used, which are based on the symmetric properties of quaternions. Images of other transcendental functions of the quaternion are also constructed: logarithmic function, trigonometric sine and cosine. These functions have found important use not only in scientific applications: physics, mechanics, but also in technical ones: orientation of a solid body in space, gyroscopy, robotics, etc. The problem of constructing images of nonlinear functions from a hypercomplex variable is reduced to their definition from the point of view of the structure of calculations over the hyper-complex argument and their representation in the form of a hyper-complex function. Knowledge of the methods of performing algebraic operations in hypercomplex number systems (HNS) allows us to construct form of them in the form of a hypercomplex function when determining linear or nonlinear functions. The construction of the form of transcendental functions from the hypercomplex argument is reduced to the image of power series of type in the form of hypercomplex functions. In some simple cases, this can be done directly. But in the general case requires the development of special methods. The aim of this work is to solve some algorithmic problems that arise when modeling representations of exponential functions in high-dimensional HNS. The structure of the algorithm for constructing the representation of an exponential function in hypercomplex number systems of high dimensionality by the method of an associated system of linear differential equations is considered in the paper. The necessary brief information about the software of hypercomplex calculations (SHCC) is given, by means of which the necessary cumbersome operations on symbolic expressions at construction of representation of an exponent in HNS of the fifth dimension are carried out. The work is accompanied by fragments of programs in the environment of SHCC and the results of symbolic calculations. Refs: 14 titles. Розглянуто структуру алгоритму побудови представлення експонен-ціальної функції у гіперкомплексних числових системах (ГЧС) високої вимірності методом асоційованої системи лінійних диференціальних рівнянь. Наведено необхідні короткі відомості про програмний комп-лекс гіперкомплексних обчислень (ПКГО), за допомогою якого проведено необхідні громіздкі операції над символьними виразами при побудові представлення експоненти в ГЧС п’ятої вимірності. Робота супроводжується фрагментами програм у середовищі ПКГО і результатами символьних обчислень. Інститут проблем реєстрації інформації НАН України 2021-06-29 Article Article application/pdf http://drsp.ipri.kiev.ua/article/view/239191 10.35681/1560-9189.2021.23.2.239191 Data Recording, Storage & Processing; Vol. 23 No. 2 (2021); 12-26 Регистрация, хранение и обработка данных; Том 23 № 2 (2021); 12-26 Реєстрація, зберігання і обробка даних; Том 23 № 2 (2021); 12-26 1560-9189 uk http://drsp.ipri.kiev.ua/article/view/239191/237859 Авторське право (c) 2021 Реєстрація, зберігання і обробка даних