Foggy computing and their mathematical modeling

Foggy computing complements the centralized cloud model. The main purpose of nebulous computing is to bring functional computing nodes closer to users. Bringing data processing and storage closer to end users allows you to solve many problems that arise with the exponential growth of the number of d...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Матов, О. Я.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем реєстрації інформації НАН України 2021
Теми:
Онлайн доступ:http://drsp.ipri.kiev.ua/article/view/244787
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Data Recording, Storage & Processing

Репозитарії

Data Recording, Storage & Processing
id drspiprikievua-article-244787
record_format ojs
institution Data Recording, Storage & Processing
baseUrl_str
datestamp_date 2021-12-14T03:35:52Z
collection OJS
language Ukrainian
topic reference architecture
foggy fog computing infrastructure
node models
service characteristics
failures
priority service disciplines
spellingShingle reference architecture
foggy fog computing infrastructure
node models
service characteristics
failures
priority service disciplines
Матов, О. Я.
Foggy computing and their mathematical modeling
topic_facet еталонна архітектура
інфраструктура туманних обчислень
моделі вузлів
характеристики обслуговування
відмови
пріоритетні дисципліни обслуговування
reference architecture
foggy fog computing infrastructure
node models
service characteristics
failures
priority service disciplines
format Article
author Матов, О. Я.
author_facet Матов, О. Я.
author_sort Матов, О. Я.
title Foggy computing and their mathematical modeling
title_short Foggy computing and their mathematical modeling
title_full Foggy computing and their mathematical modeling
title_fullStr Foggy computing and their mathematical modeling
title_full_unstemmed Foggy computing and their mathematical modeling
title_sort foggy computing and their mathematical modeling
title_alt Туманні обчислення та їхнє математичне моделювання
description Foggy computing complements the centralized cloud model. The main purpose of nebulous computing is to bring functional computing nodes closer to users. Bringing data processing and storage closer to end users allows you to solve many problems that arise with the exponential growth of the number of devices connected to the network. The reference nebulous computing architecture OpenFog Reference Architecture was proposed by the international consortium OpenFog Consortium. And in 2018, the IEEE Standards Association adopted this architecture as the official standard. The new IEEE 1934 standard regulates the use of a reference architecture as a universal techno-logy platform to support applications that require processing huge amounts of data, including the Internet of Things (IoT), industrial Internet (Industrial Internet of Things, IIoT), artificial intelligence, networks 5G and a number of other modern technologies. According to the consortium, digital innovations of the modern world — IoT, artificial intelligence, virtual reality, tactile Internet, 5G networks — can radically change production processes, business and people's lives. However, moving zetatabytes of data generated by connected businesses, buildings, hospitals, and cars can lead to many problems in traditional cloud infrastructures. The transfer to the cloud of huge arrays of data, their processing, the formation of control effects and their delivery in a reasonable time require very high performance from cloud resources and the widest bandwidth from the «end-to-end» network infrastructure. However, the construction, maintenance and development of such systems are associated with huge costs. Fog computing technology eliminates the limitations of centralized cloud solutions by providing the resources and communication channels needed for specific tasks. The concept and technological principles of the architecture of nebulous computing are given. Analytical models of nebulous computing for calculation of their characteristics with use of many streams and many priorities of applications for the decision of problems, various disciplines of service and their combinations, taking into account failures and various disciplines of additional service and accumulation in queues for time of restoration of the service device) have been considered. The models use an arbitrary law of distribution of random values of maintenance and restoration of the maintenance node, which provides additional opportunities in the study of specific nebulous calculations. Refs: 6 titles.
publisher Інститут проблем реєстрації інформації НАН України
publishDate 2021
url http://drsp.ipri.kiev.ua/article/view/244787
work_keys_str_mv AT matovoâ foggycomputingandtheirmathematicalmodeling
AT matovoâ tumanníobčislennâtaíhnêmatematičnemodelûvannâ
first_indexed 2025-07-17T10:58:28Z
last_indexed 2025-07-17T10:58:28Z
_version_ 1850411543108255744
spelling drspiprikievua-article-2447872021-12-14T03:35:52Z Foggy computing and their mathematical modeling Туманні обчислення та їхнє математичне моделювання Матов, О. Я. еталонна архітектура, інфраструктура туманних обчислень, моделі вузлів, характеристики обслуговування, відмови, пріоритетні дисципліни обслуговування reference architecture, foggy fog computing infrastructure, node models, service characteristics, failures, priority service disciplines Foggy computing complements the centralized cloud model. The main purpose of nebulous computing is to bring functional computing nodes closer to users. Bringing data processing and storage closer to end users allows you to solve many problems that arise with the exponential growth of the number of devices connected to the network. The reference nebulous computing architecture OpenFog Reference Architecture was proposed by the international consortium OpenFog Consortium. And in 2018, the IEEE Standards Association adopted this architecture as the official standard. The new IEEE 1934 standard regulates the use of a reference architecture as a universal techno-logy platform to support applications that require processing huge amounts of data, including the Internet of Things (IoT), industrial Internet (Industrial Internet of Things, IIoT), artificial intelligence, networks 5G and a number of other modern technologies. According to the consortium, digital innovations of the modern world — IoT, artificial intelligence, virtual reality, tactile Internet, 5G networks — can radically change production processes, business and people's lives. However, moving zetatabytes of data generated by connected businesses, buildings, hospitals, and cars can lead to many problems in traditional cloud infrastructures. The transfer to the cloud of huge arrays of data, their processing, the formation of control effects and their delivery in a reasonable time require very high performance from cloud resources and the widest bandwidth from the «end-to-end» network infrastructure. However, the construction, maintenance and development of such systems are associated with huge costs. Fog computing technology eliminates the limitations of centralized cloud solutions by providing the resources and communication channels needed for specific tasks. The concept and technological principles of the architecture of nebulous computing are given. Analytical models of nebulous computing for calculation of their characteristics with use of many streams and many priorities of applications for the decision of problems, various disciplines of service and their combinations, taking into account failures and various disciplines of additional service and accumulation in queues for time of restoration of the service device) have been considered. The models use an arbitrary law of distribution of random values of maintenance and restoration of the maintenance node, which provides additional opportunities in the study of specific nebulous calculations. Refs: 6 titles. Туманні обчислення доповнюють хмарні обчислення, територіально наближують вузли обробки та зберігання даних до користувачів. За рахунок скорочення трафіка це дозволяє уникнути безлічі проблем у традиційних хмарних інфраструктурах, які можуть виникнути в разі необхідності переміщення зеттабайтних обсягів даних. Одночасно скорочується час доставки рішень задач користувачів. Запропоновано аналітичні моделі туманних обчислень для вирахування характеристик з використанням багатьох потоків і багатьох пріоритетів зая-вок на рішення задач, різних дисциплін обслуговування та їхніх комбінацій з урахуванням відмов і різних дисципліни дообслуговування та накопичення в чергах на час відновлення. Інститут проблем реєстрації інформації НАН України 2021-09-21 Article Article application/pdf http://drsp.ipri.kiev.ua/article/view/244787 10.35681/1560-9189.2021.23.3.244787 Data Recording, Storage & Processing; Vol. 23 No. 3 (2021); 22-43 Регистрация, хранение и обработка данных; Том 23 № 3 (2021); 22-43 Реєстрація, зберігання і обробка даних; Том 23 № 3 (2021); 22-43 1560-9189 uk http://drsp.ipri.kiev.ua/article/view/244787/244539 Авторське право (c) 2021 Реєстрація, зберігання і обробка даних