Influence of doping additive on thermophysical and rheological properties of halogen-free polymer composition for cable insulation and sheaths

Introduction. The demand for halogen-free fire-resistant compositions for the manufacture of fire-retardant wires and cables is constantly growing. Problem. Therefore, the creation and further processing of these materials is an urgent problem. Goal. The aim of the article is to study the effect of...

Full description

Saved in:
Bibliographic Details
Date:2022
Main Authors: Zolotaryov, V. M., Chulieieva, O. V., Chulieiev, V. L., Kuleshova, T. A., Suslin, M. S.
Format: Article
Language:English
Ukrainian
Published: National Technical University "Kharkiv Polytechnic Institute" and Аnatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine 2022
Subjects:
Online Access:http://eie.khpi.edu.ua/article/view/254746
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Electrical Engineering & Electromechanics

Institution

Electrical Engineering & Electromechanics
Description
Summary:Introduction. The demand for halogen-free fire-resistant compositions for the manufacture of fire-retardant wires and cables is constantly growing. Problem. Therefore, the creation and further processing of these materials is an urgent problem. Goal. The aim of the article is to study the effect of the doping additive on the thermophysical and rheological properties of halogen-free compositions for power cables with voltage 1 kV with the determination of both the temperatures of phase and structural transformations of polymer compositions. Methodology. Experiments investigating the phase transformations were carried out with the help device of thermogravimetric analysis and differential scanning calorimetry TGA/DSC 1/1100 SF of METTLER TOLEDO company. Rheological studies of polymeric materials were conducted by using the method of capillary viscosimetry in the device IIRT–AM. Results. The influence of the doping additive on the formation of the supramolecular structure of the filled polymer compositions for cable products was determined, that resulted in the temperature increase of the decomposition beginning by 11 °С and the end of decomposition by 7 °С. Originality. The effect of a doping additive on reducing the effective melt viscosity of a polymer composition from 6·104 to 1·104 Pa·s with increasing shear rate has been shown for the first time. The shear rate of the polymer composition containing the doping additive increases from 0.5 to 20 s–1 with increasing shear stress. Practical value. The research results provide an opportunity to reasonably approach the development of effective technological processes for the manufacture of the insulation and sheaths of power cables from halogen-free polymer compositions.