NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS

Purpose. Form a neuro-fuzzy network based on temperature monitoring of overhead transmission line for the prediction modes of the electrical network. Methodology. To predict the load capacity of the overhead line architecture provides the use of neuro-fuzzy network based on temperature monitoring of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Moroz, A. N., Cheremisin, N. M., Cherkashina, V. V., Kholod, A. V.
Формат: Стаття
Мова:English
Russian
Опубліковано: National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2016
Теми:
Онлайн доступ:http://eie.khpi.edu.ua/article/view/2074-272X.2016.1.12
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Electrical Engineering & Electromechanics

Репозитарії

Electrical Engineering & Electromechanics
id eiekhpieduua-article-62611
record_format ojs
spelling eiekhpieduua-article-626112017-08-21T18:28:21Z NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS НЕЙРО-СЕТЕВОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ НЕЙРО-СЕТЕВОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ Moroz, A. N. Cheremisin, N. M. Cherkashina, V. V. Kholod, A. V. electric grid neural grid neuro-fuzzy grid temperature monitoring of air electric line prediction modes of electric grid 621.315 электрическая сеть нейросеть нейро-фаззи сеть температурный мониторинг воздушной линии прогнозирование режимов работы электрической сети 621.315 електрична мережа нейромережа нейро-фаззі мережа температурний моніторинг повітряної лінії прогнозування режимів роботи електричної мережі 621.315 Purpose. Form a neuro-fuzzy network based on temperature monitoring of overhead transmission line for the prediction modes of the electrical network. Methodology. To predict the load capacity of the overhead line architecture provides the use of neuro-fuzzy network based on temperature monitoring of overhead line. The proposed neuro-fuzzy network has a four-layer architecture with direct transmission of information. To create a full mesh network architecture based on hybrid neural elements with power estimation accuracy of the following two stages of the procedure: - in the first stage a core network (without power estimation accuracy) is generated; - in the second stage architecture and network parameters are fixed obtained during the first stage, and it is added to the block estimation accuracy, the input signals which are all input, internal and output signals of the core network, as well as additional input signals. Results. Formed neuro-fuzzy network based on temperature monitoring of overhead line. Originality. A distinctive feature of the proposed network is the ability to process information specified in the different scales of measurement, and high performance for prediction modes mains. Practical value. The monitoring system will become a tool parameter is measuring the temperature of the wire, which will, based on a retrospective analysis of the accumulated information on the parameters to predict the thermal resistance of the HV line and as a result carry out the calculation of load capacity in real time. В статье сформирована нейро-фаззи сеть с учетом температурного мониторинга воздушной линии. Отличительной особенностью, предложенной сети, являются возможность обработки информации, заданной в разных шкалах измерения, и высокое быстродействие для прогнозирования режимов работы электрической сети. У статті сформована нейро-фаззі мережа з урахуванням температурного моніторингу повітряної лінії. Відмінною особливістю, запропонованої мережі, є можливість обробки інформації, яку задано в різних шкалах вимірювання, і висока швидкодія для прогнозування режимів роботи електричної мережі. National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine” 2016-03-12 Article Article application/pdf application/pdf http://eie.khpi.edu.ua/article/view/2074-272X.2016.1.12 10.20998/2074-272X.2016.1.12 Electrical Engineering & Electromechanics; No. 1 (2016); 65-68 Электротехника и Электромеханика; № 1 (2016); 65-68 Електротехніка і Електромеханіка; № 1 (2016); 65-68 2309-3404 2074-272X en ru http://eie.khpi.edu.ua/article/view/2074-272X.2016.1.12/58141 http://eie.khpi.edu.ua/article/view/2074-272X.2016.1.12/58142 Copyright (c) 2016 A. N. Moroz, N. M. Cheremisin, V. V. Cherkashina, A. V. Kholod https://creativecommons.org/licenses/by-nc/4.0
institution Electrical Engineering & Electromechanics
collection OJS
language English
Russian
topic electric grid
neural grid
neuro-fuzzy grid
temperature monitoring of air electric line
prediction modes of electric grid
621.315
электрическая сеть
нейросеть
нейро-фаззи сеть
температурный мониторинг воздушной линии
прогнозирование режимов работы электрической сети
621.315
електрична мережа
нейромережа
нейро-фаззі мережа
температурний моніторинг повітряної лінії
прогнозування режимів роботи електричної мережі
621.315
spellingShingle electric grid
neural grid
neuro-fuzzy grid
temperature monitoring of air electric line
prediction modes of electric grid
621.315
электрическая сеть
нейросеть
нейро-фаззи сеть
температурный мониторинг воздушной линии
прогнозирование режимов работы электрической сети
621.315
електрична мережа
нейромережа
нейро-фаззі мережа
температурний моніторинг повітряної лінії
прогнозування режимів роботи електричної мережі
621.315
Moroz, A. N.
Cheremisin, N. M.
Cherkashina, V. V.
Kholod, A. V.
NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
topic_facet electric grid
neural grid
neuro-fuzzy grid
temperature monitoring of air electric line
prediction modes of electric grid
621.315
электрическая сеть
нейросеть
нейро-фаззи сеть
температурный мониторинг воздушной линии
прогнозирование режимов работы электрической сети
621.315
електрична мережа
нейромережа
нейро-фаззі мережа
температурний моніторинг повітряної лінії
прогнозування режимів роботи електричної мережі
621.315
format Article
author Moroz, A. N.
Cheremisin, N. M.
Cherkashina, V. V.
Kholod, A. V.
author_facet Moroz, A. N.
Cheremisin, N. M.
Cherkashina, V. V.
Kholod, A. V.
author_sort Moroz, A. N.
title NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
title_short NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
title_full NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
title_fullStr NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
title_full_unstemmed NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
title_sort neural network modeling in problems of prediction modes of electrical grids
title_alt НЕЙРО-СЕТЕВОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
НЕЙРО-СЕТЕВОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПРОГНОЗИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
description Purpose. Form a neuro-fuzzy network based on temperature monitoring of overhead transmission line for the prediction modes of the electrical network. Methodology. To predict the load capacity of the overhead line architecture provides the use of neuro-fuzzy network based on temperature monitoring of overhead line. The proposed neuro-fuzzy network has a four-layer architecture with direct transmission of information. To create a full mesh network architecture based on hybrid neural elements with power estimation accuracy of the following two stages of the procedure: - in the first stage a core network (without power estimation accuracy) is generated; - in the second stage architecture and network parameters are fixed obtained during the first stage, and it is added to the block estimation accuracy, the input signals which are all input, internal and output signals of the core network, as well as additional input signals. Results. Formed neuro-fuzzy network based on temperature monitoring of overhead line. Originality. A distinctive feature of the proposed network is the ability to process information specified in the different scales of measurement, and high performance for prediction modes mains. Practical value. The monitoring system will become a tool parameter is measuring the temperature of the wire, which will, based on a retrospective analysis of the accumulated information on the parameters to predict the thermal resistance of the HV line and as a result carry out the calculation of load capacity in real time.
publisher National Technical University "Kharkiv Polytechnic Institute" and State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
publishDate 2016
url http://eie.khpi.edu.ua/article/view/2074-272X.2016.1.12
work_keys_str_mv AT morozan neuralnetworkmodelinginproblemsofpredictionmodesofelectricalgrids
AT cheremisinnm neuralnetworkmodelinginproblemsofpredictionmodesofelectricalgrids
AT cherkashinavv neuralnetworkmodelinginproblemsofpredictionmodesofelectricalgrids
AT kholodav neuralnetworkmodelinginproblemsofpredictionmodesofelectricalgrids
AT morozan nejrosetevoemodelirovanievzadačahprognozirovaniârežimovrabotyélektričeskihsetej
AT cheremisinnm nejrosetevoemodelirovanievzadačahprognozirovaniârežimovrabotyélektričeskihsetej
AT cherkashinavv nejrosetevoemodelirovanievzadačahprognozirovaniârežimovrabotyélektričeskihsetej
AT kholodav nejrosetevoemodelirovanievzadačahprognozirovaniârežimovrabotyélektričeskihsetej
first_indexed 2024-06-01T14:38:16Z
last_indexed 2024-06-01T14:38:16Z
_version_ 1800669963654004736