Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106449 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106449 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1064492016-09-29T03:02:18Z Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups Yampolsky, A. We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie group admits totally geodesic unit vector eld under some conditions on structural constants. From a geometrical viewpoint, the field is either parallel or a characteristic vector field of a natural almost contact structure on the group. 2007 Article Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106449 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie group admits totally geodesic unit vector eld under some conditions on structural constants. From a geometrical viewpoint, the field is either parallel or a characteristic vector field of a natural almost contact structure on the group. |
format |
Article |
author |
Yampolsky, A. |
spellingShingle |
Yampolsky, A. Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups Журнал математической физики, анализа, геометрии |
author_facet |
Yampolsky, A. |
author_sort |
Yampolsky, A. |
title |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups |
title_short |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups |
title_full |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups |
title_fullStr |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups |
title_full_unstemmed |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups |
title_sort |
invariant totally geodesic unit vector fields on three-dimensional lie groups |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106449 |
citation_txt |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT yampolskya invarianttotallygeodesicunitvectorfieldsonthreedimensionalliegroups |
first_indexed |
2023-10-18T20:12:58Z |
last_indexed |
2023-10-18T20:12:58Z |
_version_ |
1796149277792141312 |