Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current
The objective of this paper is to optimize the process parameters of 32-nm CMOS process to get minimum leakage current. Four process parameters were chosen, namely: (i) source-drain implantation, (ii) source-drain compensation implantation, (iii) halo implantation time, and (iv) silicide annealin...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2011
|
Назва видання: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/117716 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Optimal solution in producing 32-nm CMOS technology transisto with desired leakage current / H.A.Elgomati, I.Ahmad, F.Salehuddin, F.A.Hamid, A.Zaharim, B.Y.Majlis, P.R.Apte // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 145-151 — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-117716 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1177162017-05-27T03:02:51Z Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current Elgomati, H.A. Ahmad, I. Salehuddin, F. Hamid, F.A. Zaharim, A. Majlis, B.Y. Apte, P.R. The objective of this paper is to optimize the process parameters of 32-nm CMOS process to get minimum leakage current. Four process parameters were chosen, namely: (i) source-drain implantation, (ii) source-drain compensation implantation, (iii) halo implantation time, and (iv) silicide annealing time. The Taguchi method technique was used to design the experiment. Two noise factors were used that consist of four measurements for each row of experiment in the L9 array, thus leading to a set of experiments consisting of 36 runs. The simulator of ATHENA and ATLAS were used for MOSFET fabrication process and electrical characterization, respectively. The results clearly show that the compensation implantation (46%) has the most dominant impact on the resulting leakage current in NMOS device, whereas source-drain (S/D) implantation was the second ranking factor (35%). The percent effects on signal-to-noise ratio (SNR) of silicide annealing temperature and halo implantation are much lower being 12% and 7%, respectively. For the PMOS device, halo implantation was defined as an adjustment factor because of its minimal effect on SNR and highest on the means (43%). Halo implantation doping as the optimum solution for fabricating the 32-nm NMOS transistor is 2.38×10¹³atom/cm³. As conclusion, this experiment proves that the Taguchi analysis can be effectively used in finding the optimum solution in producing 32-nm CMOS transistor with acceptable leakage current, well within International Technology Roadmap for Semiconductor (ITRS) prediction. 2011 Article Optimal solution in producing 32-nm CMOS technology transisto with desired leakage current / H.A.Elgomati, I.Ahmad, F.Salehuddin, F.A.Hamid, A.Zaharim, B.Y.Majlis, P.R.Apte // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 145-151 — Бібліогр.: 16 назв. — англ. 1560-8034 PACS 73.40.Qv, 85.30.Tv http://dspace.nbuv.gov.ua/handle/123456789/117716 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The objective of this paper is to optimize the process parameters of 32-nm
CMOS process to get minimum leakage current. Four process parameters were chosen,
namely: (i) source-drain implantation, (ii) source-drain compensation implantation,
(iii) halo implantation time, and (iv) silicide annealing time. The Taguchi method
technique was used to design the experiment. Two noise factors were used that consist of
four measurements for each row of experiment in the L9 array, thus leading to a set of
experiments consisting of 36 runs. The simulator of ATHENA and ATLAS were used for
MOSFET fabrication process and electrical characterization, respectively. The results
clearly show that the compensation implantation (46%) has the most dominant impact on
the resulting leakage current in NMOS device, whereas source-drain (S/D) implantation
was the second ranking factor (35%). The percent effects on signal-to-noise ratio (SNR)
of silicide annealing temperature and halo implantation are much lower being 12% and
7%, respectively. For the PMOS device, halo implantation was defined as an adjustment
factor because of its minimal effect on SNR and highest on the means (43%). Halo
implantation doping as the optimum solution for fabricating the 32-nm NMOS transistor
is 2.38×10¹³atom/cm³. As conclusion, this experiment proves that the Taguchi analysis
can be effectively used in finding the optimum solution in producing 32-nm CMOS
transistor with acceptable leakage current, well within International Technology
Roadmap for Semiconductor (ITRS) prediction. |
format |
Article |
author |
Elgomati, H.A. Ahmad, I. Salehuddin, F. Hamid, F.A. Zaharim, A. Majlis, B.Y. Apte, P.R. |
spellingShingle |
Elgomati, H.A. Ahmad, I. Salehuddin, F. Hamid, F.A. Zaharim, A. Majlis, B.Y. Apte, P.R. Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Elgomati, H.A. Ahmad, I. Salehuddin, F. Hamid, F.A. Zaharim, A. Majlis, B.Y. Apte, P.R. |
author_sort |
Elgomati, H.A. |
title |
Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current |
title_short |
Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current |
title_full |
Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current |
title_fullStr |
Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current |
title_full_unstemmed |
Optimal solution in producing 32-nm CMOS technology transistor with desired leakage current |
title_sort |
optimal solution in producing 32-nm cmos technology transistor with desired leakage current |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/117716 |
citation_txt |
Optimal solution in producing 32-nm CMOS technology transisto with desired leakage current / H.A.Elgomati, I.Ahmad, F.Salehuddin, F.A.Hamid, A.Zaharim, B.Y.Majlis, P.R.Apte // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2011. — Т. 14, № 2. — С. 145-151 — Бібліогр.: 16 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT elgomatiha optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent AT ahmadi optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent AT salehuddinf optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent AT hamidfa optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent AT zaharima optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent AT majlisby optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent AT aptepr optimalsolutioninproducing32nmcmostechnologytransistorwithdesiredleakagecurrent |
first_indexed |
2023-10-18T20:30:27Z |
last_indexed |
2023-10-18T20:30:27Z |
_version_ |
1796150379739611136 |